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Introduction to Logic Programming

 Fundamental Logic Programming concepts
 Related to FP

 General implementation characteristics of LP
languages

» Gain an understanding of the execution model
of core.logic



Pure Functions

* Pure functions (in Functional Programming)

* Functions always have one value

- Deterministic

» Works for only one pattern of input and output
arguments

 Sometimes functions are inappropriate

* ed. 4 has two square roots, +2 and -2

— 2 results
e eg. Dividing a number by zero yields no result

- 0 results



Relations

* \We generalize functions to get relations

* Any number of results (zero or more)

— Non-deterministic

« Pattern of inputs and output arguments can be different for
each call



Relations

* |n mathematics, the expression 'XrY'is true if Xand Y satisfy
the relation 'r’

e eg. X<Y', 4 ways the '<' relation can be considered

- A generator of the (infinite) set of all (X,Y) pairs for which
X<Y

- A predicate that can be applied to (X,Y) pairs

- A generator, that given X, will yield all Y values greater
than X

- A generator, that given Y, will yield all X values less than
Y

Modified from LIBRA: A Lazy Interpreter of Binary Relational Algebra (1995), Dwyer



Converting a Function to a Relation

Relations return true if the relation is true, and false if the
relation is false

To convert a function to a relation

1) Convert the return value to an argument

(cons 1 [2])

;=> [1 2]\

(cons® 1 [2] [1 2])
+=> true



cons®

 We can use cons’ as a predicate if all arguments are
ground values (not variables)

 For (cons’ head tail result), conso returns true if head
consed onto tail equals result

(cons® 1 [2] [1 2])
s => true

(cons® 1 [] [1 2])
+=> false



cons®

 \We can use cons’ as a generator if one argument is a
variable

» solve introduces a logic variable x and returns a list of all
values of x that satisfy the relation

» Caps number of results with integer argument

(solve 1 [x] (solve 1 [x]
(cons® 1 [2] x)) (cons® 1 x [1 27))
;=> (11 21) i=> (121)



sqrt®

* Arelation that can generate multiple results

(solve 2 [Xx]
(sqrt® 4 x))
i=> (2 -2)



Logic Language Implementation

* Logic Languages usually calculate zero or more results

* Non-deterministic
« Execution strategy must be flexible

* |Implemented as a search



Execution Strategy - Branches

* A choice point groups together a set of alternative
statements

 |f visualized as a tree, they are the branching nodes

« Executing a choice point picks an alternative statement
and follows it

 |f an alternative is found to be wrong later on, then another
one is picked




Execution Strategy - Failure

A node fails if it consists of a fail statement that indicates
the current alternative is wrong

* This indicates we backtrack to a choice point and try
another alternative

-



Execution Strategy — Leaf Nodes

* Aleaf node represents one valid result

e Contributes to our non-deterministic result

 |f another result is requested, we backtrack to a choice
point and execute another alternative statement
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Encapsulated Search

* Relational programs can potentially execute in many
different ways. We want to control which choices are
made, and when they are made

» Search strategy: depth-first search, breadth-first search,
some other strategy

» Specify the number of results

* One approach is to execute the relational program with
encapsulated search inside a kind of environment which
controls which choices are made and when they are made

* Also protects the rest of the environment from (side)
effects of the choices



Functional Approach

Protects from the effects of choices by representing state by
substitutions

» Like a list of identity-value pairs for logic variables
Goals are the "next state” functions

e Functions of (Substitution — LazyList Substitution)
« Relations implemented as goals

Controls which choices are made by different monadic
strategies, best visualized by search trees

* Depth-first search, interleaving search
Controls number of results by directive from programmer



Introducing core.logic



core.logic

Non-deterministic
Substitutions
Goals

Queries via run

Unbound logic variable represented by .0, .1 ...

N



Fundamental Goals

 succeed is a no-op

 fail indicates that the current branch is wrong

(run 1 [q] (run 1 [q]
succeed) fail)

7=> (_-0) s=> ()

((g :UNBOUND))

((q :UNBOUND))
((q :UNBOUND)) Cb

v
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Unification

* Unification answers the question “what must the world look like
for the left and right arguments to be equal?”

* eg. What must the world look like for 1 and q to be equal?

(run 1 [q] ((q :UNBOUND))

(== 1 a))
= D BRI
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Initialising Logic Variables

* fresh is similar to let, but initialises unbound (fresh) logic
variables

((g :UNBOUND))
(run 1 [q] i
(fresh [vl1] ((q :UNBOUND)
(== vl 1) (vl :UNBOUND))
(== q v1))) l
7=> (1)



Choice points

» conde is how we define a choice point between multiple
alternatives

e Syntax like Scheme's cond, but can have 0+ answers

(conde
(<question 1> <answer 1> <answer ..>)
(<question 2> <answer 1>)
(<question n>))



conde

» conde is used as branch point for multiple results

(run 2 [q]
(conde

((==q 1)) ¢ 172
(succeed
fail)
(succeed){”zﬁz
((==4q 2))))

;=> (1 .0)




Relational Arithmetic

(defn succ [p n]
"p, n are natural numbers such that n
is the successor of p"
(conso p [] n))

(def zero 0)
(def one '(0))

(run 1 [qg]
(succ zero q))

7=> ((0))

(run 1 [q]
(succ g one))
i=> (0)



Numbers

(defn natural-number [X]
"X is a natural number"
(conde
((== xX zero))
((fresh [previous]
(succ previous X)
(natural-number previous)))))

(run 1 [q]
(natural-number one))
i=> (_.0)

(run 6 [g]
(natural-number g

7=> (0 (0) ((0)) ((
((

))
(0))
; (CCC0)))) (CCCC0))))))



Tracing Execution

(fresh [q] (run 6 [q]
(conde (natural-number q))
__ 7=> (0 (0) ((0)) (((0)))
(7= g zere)) ;((((0)))) (((((0)))

((fresh [prev] )))

(succ prev q)
(natural-number prev))))

S »



Tracing Execution

(fresh [q] (run 6 [q]
(conde (natural-number q))
°e ;=> (0 (0) ((0)) (((0)))
((== q zero)) ;((((0)))) (((((0))))))

((fresh [prev]
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prevZ prev)
(natural-number prev2)))))))




Tracing Execution

(run 6 [d]
(fiizﬁdéq] (natural-number q))
((== q zero)) ;=> (0 (0) ((0)) (((0)))
((fresh [prev] ; (CCC0)))) CCCC0))))))
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prev2 prev)
(conde
((== prev2 zero))
((fresh [prev3]
(succ prev3 prevl)
(natural-number prev3)))))))))))

S -



Tracing Execution

(run 6 [q]
(fiizﬁdéq] (natural-number q))
((== q zero)) ;=> (0 (0) ((0)) (((0)))
((fresh [prev] ; (CCC0)))) CCCC0))))))
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prev2 prev)
(conde
((== prev2 zero))
((fresh [prev3]
(succ prev3 prevl)

(conde ; \-.A
((== prev3 zero))

((fresh [previ]
(succ prevd prev3d)
(natural-number prev4))))))))))))))




Type Checker for the Simply Typed
Lambda Calculus

(defn geto [key env value]
"env is an environment such that the expression key is
associated with the expression value"
(matche [env]
([[[key :- value] . _11)
([[_ . ?rest]] (geto key ?rest value))))

(defn typedo [context exp result-type]
"“context™ is an environment such that expression “exp executed in
environment ~context® results in type " result-type "
(conde
((geto exp context result-type))
( (matche [context exp result-type]
([ [:apply ?fun ?arg] ]
(fresh [arg-type]
(!= ?2fun ?argqg)
(typedo context ?arg arg-type)
(typedo context ?fun [arg-type :> result-typel)))))))



Type Checker..

(run 1 [q]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
[:apply 'f 'g]
Integer))

;=> ( .0)



Type Inferencer...

(run 1 [q]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
[:apply 'f 'g]

q))
;=> (Integer)



Code Generator..

(run 4 [qg]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
°l
Integer))
=> (g
[:apply f g]

[:apply £ [:apply f g]]
[:apply f [:apply f [:apply f gl]])

e e e e

(run 2 [q]
(typedo [['a :- [Integer :> Float]]
q]
[:apply 'a 'b]
Float))
;=> ([[:apply a b] :- java.lang.Float]

; [b :- java.lang.Integer])



Resources




Resources

* |Introduction to Logic Programming with Clojure
» https://github.com/frenchy64/Logic-Starter/wiki
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