Introduction to Logic Programming

Ambrose Bonnaire-Sergeant
@ambrosebs
abonnairesergeant@gmail.com

Introduction to Logic Programming

 Fundamental Logic Programming concepts
 Related to FP

 General implementation characteristics of LP
languages

» Gain an understanding of the execution model
of core.logic

Pure Functions

* Pure functions (in Functional Programming)

* Functions always have one value

- Deterministic

» Works for only one pattern of input and output
arguments

 Sometimes functions are inappropriate

* ed. 4 has two square roots, +2 and -2

— 2 results
e eg. Dividing a number by zero yields no result

- 0 results

Relations

* \We generalize functions to get relations

* Any number of results (zero or more)

— Non-deterministic

« Pattern of inputs and output arguments can be different for
each call

Relations

* |n mathematics, the expression 'XrY'is true if Xand Y satisfy
the relation 'r’

e eg. X<Y', 4 ways the '<' relation can be considered

- A generator of the (infinite) set of all (X,Y) pairs for which
X<Y

- A predicate that can be applied to (X,Y) pairs

- A generator, that given X, will yield all Y values greater
than X

- A generator, that given Y, will yield all X values less than
Y

Modified from LIBRA: A Lazy Interpreter of Binary Relational Algebra (1995), Dwyer

Converting a Function to a Relation

Relations return true if the relation is true, and false if the
relation is false

To convert a function to a relation

1) Convert the return value to an argument

(cons 1 [2])

;=> [1 2]\

(cons® 1 [2] [1 2])
+=> true

cons®

 We can use cons’ as a predicate if all arguments are
ground values (not variables)

 For (cons’ head tail result), conso returns true if head
consed onto tail equals result

(cons® 1 [2] [1 2])
s => true

(cons® 1 [] [1 2])
+=> false

cons®

 \We can use cons’ as a generator if one argument is a
variable

» solve introduces a logic variable x and returns a list of all
values of x that satisfy the relation

» Caps number of results with integer argument

(solve 1 [x] (solve 1 [x]
(cons® 1 [2] x)) (cons® 1 x [1 27))
;=> (11 21) i=> (121)

sqrt®

* Arelation that can generate multiple results

(solve 2 [Xx]
(sqrt® 4 x))
i=> (2 -2)

Logic Language Implementation

* Logic Languages usually calculate zero or more results

* Non-deterministic
« Execution strategy must be flexible

* |Implemented as a search

Execution Strategy - Branches

* A choice point groups together a set of alternative
statements

 |f visualized as a tree, they are the branching nodes

« Executing a choice point picks an alternative statement
and follows it

 |f an alternative is found to be wrong later on, then another
one is picked

Execution Strategy - Failure

A node fails if it consists of a fail statement that indicates
the current alternative is wrong

* This indicates we backtrack to a choice point and try
another alternative

-

Execution Strategy — Leaf Nodes

* Aleaf node represents one valid result

e Contributes to our non-deterministic result

 |f another result is requested, we backtrack to a choice
point and execute another alternative statement

——

T
o

am
v

1/2 Results 2/2 Results

Encapsulated Search

* Relational programs can potentially execute in many
different ways. We want to control which choices are
made, and when they are made

» Search strategy: depth-first search, breadth-first search,
some other strategy

» Specify the number of results

* One approach is to execute the relational program with
encapsulated search inside a kind of environment which
controls which choices are made and when they are made

* Also protects the rest of the environment from (side)
effects of the choices

Functional Approach

Protects from the effects of choices by representing state by
substitutions

» Like a list of identity-value pairs for logic variables
Goals are the "next state” functions

e Functions of (Substitution — LazyList Substitution)
« Relations implemented as goals

Controls which choices are made by different monadic
strategies, best visualized by search trees

* Depth-first search, interleaving search
Controls number of results by directive from programmer

Introducing core.logic

core.logic

Non-deterministic
Substitutions
Goals

Queries via run

Unbound logic variable represented by .0, .1 ...

N

Fundamental Goals

 succeed is a no-op

 fail indicates that the current branch is wrong

(run 1 [q] (run 1 [q]
succeed) fail)

7=> (_-0) s=> ()

((g :UNBOUND))

((q :UNBOUND))
((q :UNBOUND)) Cb

v

1/1

0/1

Unification

* Unification answers the question “what must the world look like
for the left and right arguments to be equal?”

* eg. What must the world look like for 1 and q to be equal?

(run 1 [q] ((q :UNBOUND))

(== 1 a))
= D BRI

v

1/1

Initialising Logic Variables

* fresh is similar to let, but initialises unbound (fresh) logic
variables

((g :UNBOUND))
(run 1 [q] i
(fresh [vl1] ((q :UNBOUND)
(== vl 1) (vl :UNBOUND))
(== q v1))) l
7=> (1)

Choice points

» conde is how we define a choice point between multiple
alternatives

e Syntax like Scheme's cond, but can have 0+ answers

(conde
(<question 1> <answer 1> <answer ..>)
(<question 2> <answer 1>)
(<question n>))

conde

» conde is used as branch point for multiple results

(run 2 [q]
(conde

((==q 1)) ¢ 172
(succeed
fail)
(succeed){”zﬁz
((==4q 2))))

;=> (1 .0)

Relational Arithmetic

(defn succ [p n]
"p, n are natural numbers such that n
is the successor of p"
(conso p [] n))

(def zero 0)
(def one '(0))

(run 1 [qg]
(succ zero q))

7=> ((0))

(run 1 [q]
(succ g one))
i=> (0)

Numbers

(defn natural-number [X]
"X is a natural number"
(conde
((== xX zero))
((fresh [previous]
(succ previous X)
(natural-number previous)))))

(run 1 [q]
(natural-number one))
i=> (_.0)

(run 6 [g]
(natural-number g

7=> (0 (0) ((0)) ((
((

))
(0))
; (CCC0)))) (CCCC0))))))

Tracing Execution

(fresh [q] (run 6 [q]
(conde (natural-number q))
__ 7=> (0 (0) ((0)) (((0)))
(7= g zere)) ;((((0)))) (((((0)))

((fresh [prev])))

(succ prev q)
(natural-number prev))))

S »

Tracing Execution

(fresh [q] (run 6 [q]
(conde (natural-number q))
°e ;=> (0 (0) ((0)) (((0)))
((== q zero)) ;((((0)))) (((((0))))))

((fresh [prev]
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prevZ prev)
(natural-number prev2)))))))

Tracing Execution

(run 6 [d]
(fiizﬁdéq] (natural-number q))
((== q zero)) ;=> (0 (0) ((0)) (((0)))
((fresh [prev] ; (CCC0)))) CCCC0))))))
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prev2 prev)
(conde
((== prev2 zero))
((fresh [prev3]
(succ prev3 prevl)
(natural-number prev3)))))))))))

S -

Tracing Execution

(run 6 [q]
(fiizﬁdéq] (natural-number q))
((== q zero)) ;=> (0 (0) ((0)) (((0)))
((fresh [prev] ; (CCC0)))) CCCC0))))))
(succ prev q)

(conde
((== prev zero))
((fresh [prev2]
(succ prev2 prev)
(conde
((== prev2 zero))
((fresh [prev3]
(succ prev3 prevl)

(conde ; \-.A
((== prev3 zero))

((fresh [previ]
(succ prevd prev3d)
(natural-number prev4))))))))))))))

Type Checker for the Simply Typed
Lambda Calculus

(defn geto [key env value]
"env is an environment such that the expression key is
associated with the expression value"
(matche [env]
([[[key :- value] . _11)
([[_ . ?rest]] (geto key ?rest value))))

(defn typedo [context exp result-type]
"“context™ is an environment such that expression “exp executed in
environment ~context® results in type " result-type "
(conde
((geto exp context result-type))
((matche [context exp result-type]
([[:apply ?fun ?arg]]
(fresh [arg-type]
(!= ?2fun ?argqg)
(typedo context ?arg arg-type)
(typedo context ?fun [arg-type :> result-typel)))))))

Type Checker..

(run 1 [q]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
[:apply 'f 'g]
Integer))

;=> (.0)

Type Inferencer...

(run 1 [q]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
[:apply 'f 'g]

q))
;=> (Integer)

Code Generator..

(run 4 [qg]
(typedo [['f :- [Integer :> Integer]]
['g := Integer]]
°l
Integer))
=> (g
[:apply f g]

[:apply £ [:apply f g]]
[:apply f [:apply f [:apply f gl]])

e e e e

(run 2 [q]
(typedo [['a :- [Integer :> Float]]
q]
[:apply 'a 'b]
Float))
;=> ([[:apply a b] :- java.lang.Float]

; [b :- java.lang.Integer])

Resources

Resources

* |Introduction to Logic Programming with Clojure
» https://github.com/frenchy64/Logic-Starter/wiki

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34

