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)\ TC Formalism
1. Based on Occurrence Typing|[1] (big-step semantics)
2. Add Typed Clojure features: HMaps, Multimethods

3. Add (some) Java Interop: Classes, Methods, Fields...

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen



Type soundness

ATC

Theorem  Well-typed programs don’t “go wrong”

Well-typed programs

Corollar
g don’t throw null-pointer exceptions
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circleci

19k lines of Typed Clojure
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In submission:
“Squash the work: A Workflow for Typing Untyped Programs that use Ad-Hoc Data Structures”,
Ambrose Bonnaire-Sergeant, Sam Tobin-Hochstadt
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annotate: e, x — A

annotate = infer o collect

“Track and annotate x’s in program e”
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(f {:a 42}) => 42 Test

T —————

annotate((f {:a 42}),|f]) ={f:[{:a N} — N|}

Test Track-me Derived type

L I ———
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Aggressively combines
types to create compact aliases
and recursive types

Tailored for the workflow



/ Evaluation

Typed Racket
(prior work)

Automatic

Typed
Clojure | Annotations

Design-- Design+Implement

\ .
Impleme. Formalize

Evaluation

Formalize+Sound

Extensible

Symbolic

Execution

Prototype

lyping
Rules




Evaluation

Ported 5 open-source
programs (~1500 LOC)

Measured the kinds of
manual changes needed



Auto-generated

types
’ (ann mult [Int Int :-> Int])



Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])



Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])

Auto-generated

types
(ann initial-perm-numbers [(Map Int Int) :-> (Coll Int)])




Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])

Auto-generated

types *

(ann initial-perm-numbers [(Map @@ Int) :-> (Coll Int)])

(ann initial-perm-numbers [(Map ARy Int) :-> (Coll Int)])

Manual ”

changes



(defn parse-exp [e]

Has an *

interesting (cond
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}

(= 'n? e) {:E :n?}

.+))



(defalias E
(U

:app, :args (Vec E), :fun E}

':false}

:1f, :else E, :test E, :then E}
':lambda, :arg Sym, :arg-type T, :body E}

' - :var, :name Sym}))

types
*(ann parse-exp [Any :-> E])
Has an * (defn parse-exp [e]
(cond

interesting
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}
(= 'n? e) {:E :n?}

)

e N e N e N e s

m rm rm rm rri

Auto-generated



(defalias E

Manual * "{:E ':addl)}
changes i {:E “inej o .
CEEEEEIYE T app, -args (Vec E), :fun E}
'{:E ":false}
'{:E ":1f, :else E, :test E, :then E}
' '{:E '":lambda, :arg Sym, :arg-type T, :body E}
Auto-generated '{:E ':var, :name Sym}))

types
,(ann parse-exp [Any :-> E])
Has an * (defn parse-exp [e]
; (cond

interesting
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}
(= 'n? e) {:E :n?}

)



Manual effort

Mostly deleting/upcasting types

Adding missing cases to
(generated) recursive types
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Scorecard

Functional
programming

Immutability

The REPL

Ease of } x
development

Automatic annotations makes
porting Clojure programs easier

Host Interop



Part 111
Extensible Typing Rules
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Problem

(for [a [1 2 3]]
(inc a))



Problem

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any



Problem

How to propagate type information?

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any



Idea




Idea

Allow the user to define custom
typing rules for macros



Roadblock:

Expansion comes before check

Fully expand

v
Type check

v
Run




v

Type

Fully expand

v

chec

v
Run

e

Roadblock:

Expansion comes before check

Time

(let [...]

(cond ...

(+ ...)))

analyze”

analyze®

) || pre-passes”

post-passes
check”

check™

<

1. check”
) check™

\W
m

pre-passes”

post-passes™

analyze”
analyze“

pre-passes”

post-passes

check”
check™

<




Roadblock:

Expansion comes before check

Time || (let [...] (cond ... (+ ...)))
0 || analyze”

1 analyze~” [
c o o "‘ané[l'yze1 Y
: i{\analyze & -
\,

analyze“
Fully expand
pre-passes”
pre-passes”
1 post-passes*
post-passes™
post-passes*®
check”

Type check

Run 12 el - Already

expanded!

; check”
check™




Solution

Allow Typed Clojure to
interleave macroexpansion

and type checking
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Checker controls expansion




| wrote a new
Clojure code analyzer

Time || (let [...] (cond ... (+ ...)))
0 || unanalyzed~”
l || analyze-outer”
2 || run-pre-passes”
3 || check”
1 analyze-outer”
5 run-pre-passes-
6 check” Ve N
7 Y analyze-outer™ "\
3 " | run-pre-passes” Y
9 check”
10 run-post-passes < j
11
12 run-post-passes” | g __ ot
13 check™ B -
14 || run-post-passes*® E d
15 || check< XP a-n

as needed



This was non-trivial

Must also interleave evaluation
Maintains correct lexical scope

[nteracts with Clojure’s type hinting system



Example type checker
with new analyzer

(defn check-expr
"Check an AST noade has the expected type."”
expr expected]
(if (= :unanalyzed (:op expr))
(case <resolved-op-sym-for-expr>
clojure.core/cond (check-special-cond expr expected)
: default case
(check-expr (analyze-outer expr) expected))
(run-post-passes
(check (run-pre-passes expr)

expected) ) ) )



Example type checker
with new analyzer

(defn check-expr

I

"Check an AST node has the expected type.

prartzally expr expected]
*(if (= :unanalyzed (:op expr))
expandEd“- (case <resolved-op-sym-for-expr>

clojure.core/cond (check-special-cond expr expected)

: default case
(check-expr (analyze-outer expr) expected))
(run-post-passes
(check (run-pre-passes expr)
expected) ) ) )



Example type checker
with new analyzer

(defn check-expr

I

"Check an AST node has the expected type.

prartzally expr expected]
*(if (= :unanalyzed (:op expr))
expandEd“- (case <resolved-op-sym-for-expr>

clojure.core/cond (check-special-cond expr expected)

Cu.S'tOm }’ules * . default case
(check-expr (analyze-outer expr) expected))

(run-post-passes
(check (run-pre-passes expr)
expected) ) ) )



Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard




Scorecard

Functional
programming

vX
v

} x P Extensible rules Prototype:

Improve errors, check more programs

Immutability

The REPL

Ease of
development

Host Interop

v
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Symbolic Execution
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Goal: Reduce local annotations

(let [f (fn [x :- Int] x)]
(f 1))

(map (fn [p :- Point]
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Goal: Reduce local annotations

(let [f (fn [x(
(f 1))

(map (fn [p :- Point]
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Goal: Reduce local annotations

(let [f (fn [x(?w\f
(f 1))

(nap (fn [p :-(Point}

(:y p)))
[ (point 1 2) (point 3 4)])




Setting: Bidirectional Checking

(let [ (fn [x :- ??2?] Xx)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [ (fn [x :- ??2?] Xx)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [ (fn [x :- ???] Xx)]

(1) W

Must have type of x here

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [ (fn [x :- ???] Xx)]

(1) W

Must have type of x here

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])

Must have type of p here



Intuition

(let [f (fn [x :- ???] X)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Intuition

(let [f (fn [x :- ???] X)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[ (point 1 2) (point 3 4)])



Intuition

(let [ (fn [x :- ??2?] Xx)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
(point 1 2) (point 3 4)])



Intuition

(let [ (fn [x :- ??2?] Xx)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
nt 12) (point 3 4)1)




Approach

New type rule for checking (unannotated) functions:

(let [ (fn [x] x)]

(f 1))



Approach

New type rule for checking (unannotated) functions:

(let [ (fn [x] x)]

(f 1)) \

The type of a function is its code




Approach

New type rule for checking (unannotated) functions:

(let [ (fn [x] x)]

(f 1))

The type of a function is its code
...and the type environment it was “defined” at




Approach

New type rule for checking (unannotated) functions:

(let [ (fn [x] x)]

(f 1))
Symbolic Closure Types

Resembles runtime closures, except
executed symbolically



Approach

(let [ (fn [x] x)]

4

Application rule?

(f 1))




Approach

(let [ (fn [x] x)]

(-F 1U




Tradeoffs

Undecidable in general

However, many local functions
are only used once and are non-recursive

Can rely on top-level annotations to drive
the symbolic execution
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Naive formalism

UAPP
[MFe :TQXz)f TI'hles:o

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T



Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T



Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T



Naive formalism

UAPP
[MFe :TQXz)f TI'hles:o

UABS I, :c:a(

'FXax)f:TQX(x)f [t ei(ez): T



Naive formalism

UAPP

F, — €1 F@)\(ib)f F, — € .0
UABS ', x:0 l_\fZT
'FXax)f:TQX(x)f [t ei(ez): T



Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [ - ei(e2) IvT



Prototype Implementation



Prototype Implementation

(tc ? 1)
=> Int



Prototype Implementation

(tc ? 1)
=> Int

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int]



Prototype Implementation

(tc ? 1)
=> Int
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(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int]



Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int



Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))



Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

(tc ? ((fn [x] x) 1))
=> Int



Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

¥~ N\
(tc ? ((fn [x] x) 1))
=> Int



Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

¥~ N\
(tc ? ((fn [x] x) 1))

=> Int <_/



Prototype Implementation

(tc ? (map (fn [x] x) [1 2 3]))
=> (Seq Int)



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))
=> (Seq Int)



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq InV



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq InV

(tc ? (map (comp (fn [x] X)
(fn [yl y))
[1 2 3]))

=> (Seqg Int)



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iwil—”/,//’

(tc ? (map (comp (fn [x] X)
(fn [y] y))

[1 2: 31)) A

=> (Seqg Int)



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iwil—”/,//’

(tc ? (map (comp (fn [x}n\x)
(fn [yl y))

[1 2: 31)) A

=> (Seqg Int)



Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iw:i—”/,//’

(tc ? (map (comp (fn [X4&X
(fn [y?\y)

[1 2: 31)) A

=> (Seqg Int



Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))

1] LICS’88, Giannini & Rocca



Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

(GR (fn [ ] (fn [ ] 42))) ;=> 42
(GR (fn [ ] (fn [ ] “hello”))) ;=> “hello”

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))

1] LICS’88, Giannini & Rocca



Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

GR

v

(let [I (fn [a] a)

k(o [v] (0 [ ) Challenge: Type check this quirky identity function

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))

(x K)))) (ann id (A1l [a] [a -> a]))
(defn id [x]
(GR (fn [_] (fn [_] x))))
1] LICS’88, Giannini & Rocca

(GR (fn [ ] (fn [ ] 42))) ;=> 42
(GR (fn [ ] (fn [ ] “hello”))) ;=> “hello”

D))



Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))



Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a] [a -> a])

GR
* (fn [x]
(GR (fn [_] (n [_] x)))))




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
(GR (fn [_] (n [_] x)))))




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
H(GR (P[] (tn 11 %)))))

& 4
=> (All [a] [a -> a])




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
(GRA(fn [_] (fn [_] x)))))

[
=> (All [a] [a -> a])




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
7iG A(‘c” [_] (fn [_] x)))))

‘Y
=> (All [a] [a -> a])




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR /{
* (fn [x]
7iG A(‘c” [_] (fn [_T7x)))))

‘Y
=> (All [a] [a -> a])




Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

AN
";GRV\(;” [_] (fn [_T7x)))))

v

=> (All [a] [a -> a])

Symbolic Closures make the most
of top-level annotations
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Scorecard

Functional
programming

VX & Symbolic closure prototype:
v, Checks more programs

Ease of } x
development

Immutability

Host Interop



Conclusion



Typed Clojure is a
sound and practical
optional type system for Clojure
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Typed Clojure is a
sound and practical
optional type system for Clojure

\—
o~ o
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Implement
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Thanks



Extra slides



Type soundness Proof

1 Extend calculus with Java-style throwable errors

2 Make explicit assumptions about Java

3. Add “stuck”, "wrong”, and “error” rules to semantics

4.  Shown: Well-typed programs reduce to correct values or errors
» By induction on the reduction derivation, then cases on final red.

rule and final (non-subsump.) typing rule
5. Corollary: Well-typed programs don’t “go wrong”
6. Corollary: Well-typed programs don’t throw null-ptr
exceptions



