O Typed Clojure
1N

Theory and Practice

Ambrose Bonnaire-Sergeant

What is Clojure?

A programming language
running on the Java Virtual Machine

What is Clojure?

A programming language
running on the Java Virtual Machine

90%

3% of JVM users’ primary language is Clojure
- [JVM Ecosystem Report 2018, snykK.io]

http://snyk.io

90%

What is Clojure?

A programming language
running on the Java Virtual Machine

3.00%
-‘ 2.42%
2.36%

1.83%
0.60%

3% of JVM users’ primary language is Clojure
- [JVM Ecosystem Report 2018, snykK.io]

Java

Clojure

Kotlin

Groovy

Scala

Other

Kotlin

Groovy

Scala

Clojure

Other

Not Yet

| .

0.0% 20.0% 40.0% 60.0% 80.0%

Percentage

1.1% of JVM users have adopted Clojure

- [The State of Java in 2018, baeldung.com]

B Adoption

http://snyk.io
http://baeldung.com

General Purpose

Web
development

Open source
projects

Commercial
services

Enterprise apps

Math / data
analysis

"Big Data"

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[State of Clojure 2019 Survey]

Survey: Why Clojure?

Functional
programming

|
Ease of
development
|
l

Host Interop
(JVM/JS/CLR)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

o
Survey: Why Clojure?
|
programming | } Values,
First-class functions

Ease of
development

Host Interop
(JVM/JS/CLR)

l

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

rogrammin
Prog g I Values,
First-class functions
Experimentation,
\ Rapid prototyping
Ease of
development
Host Interop
(JVM/JS/CLR)
’I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Survey: Why Clojure?

rogrammin
Prog g I Values,
First-class functions
Experimentation,
\ Rapid prototyping
Ease of
development
Host Interop
(JVM/JS/CLR) Leverage host
’I
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

[State of Clojure 2019 Survey, Weighted average: 0 = Not Important, 1 = Important, 2 = Very Important]

Frustrations with Clojure

Need better |
#4 tools / IDEs

No static

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

[State of Clojure 2019 Survey]

Frustrations with Clojure

Need better
#4 tools / IDEs My take
Clojure programmers need help
No static
o

specifying and verifying
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

their programs

[State of Clojure 2019 Survey]

My Research

O Typed Clojure

Typed Clojure is an optional type system tor Clojure

My Research
Good Response to Typed Clojure

2012 2013 2014 2015 2016 2017
lo/lure NbiEGoGo i INDIEGOGO C|ojur
CCO(”? ke C@ C@ $8,621 USD CCOC”? e

$35,254 UsD

oogle strangelaop strangelaop 73 back
e 728 backers ° - 3 backers

Google

| Google | Google
le

| Goog
\\/_) EMERGING TECHNOLOGIES INDIEGOGO

/](EEEEEEEEEEEEEEEE
$11,695 USD by 199 backers

Followers

| clojure / core.typed @®unwatch~ 92 | unstar 1076 = ¥Fork 68 , Typed Clojure 1,574

@TypedClojure

My Research
How Typed Clojure works

My Research
How Typed Clojure works

1. Take an existing
Clojure program

(defn say-hello [tol

(str ‘“Hello, ’’ to))

(say-hello ‘“‘world!’’)
;=> ‘“‘Hello, world!”’

My Research
How Typed Clojure works

1. Take an existing 2. Add type
Clojure program annotations

(defn say-hello [tol
(str ‘“Hello, ’’ to))

(say-hello ‘‘world!’’)
:=> ‘“Hello, world!”’

My Research
How Typed Clojure works

1. Take an existing 2. Add type
Clojure program annotations

(ann say-hello [Any -> String])
(defn say-hello [tol
(str ‘“Hello, ’’ to))

(say-hello ‘“‘world!’’)
;=> ‘“‘Hello, world!”’

My Research
How Typed Clojure works

1. Take an existing 2. Add type 3. Use the type checker

Clojure program annotations to verity Clojure
programs (statically)

(ann say-hello [Any -> String])
(defn say-hello [tol
(str ‘“Hello, ’’ to))

(say-hello ‘‘world!’’)
:=> ‘“Hello, world!”’

My Research
How Typed Clojure works

1. Take an existing 2. Add type 3. Use the type checker

Clojure program annotations to verity Clojure
programs (statically)

(ann say-hello [Any -> String])

. String *

Typed Clojure is a
sound and practical
optional type system for Clojure

My 'Thesis Statement:

Typed Clojure is a
sound and practical
optional type system for Clojure

My 'lhesis Statement:

Typed Racket
(prior work)

Typed Clojure is a
sound and practical
optional type system for Clojure

My 'lhesis Statement:

Typed Racket\ Typed
\ (prior work) / Clojure

Design+
Implement

Formalize+Sound

.

Typed Clojure is a
sound and practical
optional type system for Clojure

1tement:

Evaluation

Typed Racket\ Typed
\ (prior work) / Clojure

Design+
Implement

Formalize+Sound

Typed Clojure is a
sound and practical
optional type system for Clojure

My 'lhesis Statement:

/ Evaluation -

/Typed Racket\ Typed Automatic
(prior work) /) Clojure | Annotations

Design+Iimplement
N\ Implement

j Formalize+Sound Evaluation

Typed Clojure is a
ind and practical
em for Clojure

My 'lhesis Statement:

SN

Evaluati'c;r;’ N\ R
Extensible

lyping
Rules

/Typed Racket\ Typed Automatic
(prior work) /) Clojure | Annotations

Design+Implement
Implement

g Formalize+Sound

Evaluation

Typed Clojure is a
sound and practica
optional type systs

My 'lhesis Statement:

Evaluation

Symbolic

Execution

, ensible
/Typed Racket\ Typed Automatic Tvpin
(prior work) /) Clojure | Annotations -

Design+ Design+Implement RUIES
Protot
Implement Formalize ———
g Formalize+Sound Evaluation

Prototype

N

Part |

Design and Evaluation
of Typed Clojure

EUROPEAN JOINT CONFERENCES ON
THEORY & PRACTICE OF SOFTWARE

Evaluation

Extensible

Automatic
Annotations

Design+ Design+Implement

Typed Racket
(prior work)

Symbolic

Execution

Prototype

lyping
Rules

Implement Formalize

Formalize+Sound SEVETls

Published:

“Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant, Rowan Davies, Sam
Tobin-Hochstadt; ESOP 2016

/ Evaluation

Typed Racket
(prior wor

Automatic

Typed
Clojure | Annotations

Design+Implement
Implement
Formalize+Sound

\

Extensible

Symbolic

Execution

Prototype

lyping
Rules

Check with Typed Clojure

Functional
programming

_
|
Ease of
development
|
|

Host Interop
(JVM/JS/CLR)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

Simple Functions

Scorecard

Functional
programming

Immutability
(defn point [x y]
{:x X, 1y y})

The REPL
(:x (point 1 2))
Ease of ;=> 1
development (:y (point 1 2))
;=> 2

Host Interop

Simple Functions

Scorecard
Functional ,
pmgurzcmlnz?nag (defalias Point
'"{:x Int :y Int})
Immutability (ann point [Int Int -> Point])
(defn point [X VY]
X X,
The REPL { Y y})
(:x (point 1 2))
Ease of ;=> 1
development (y (point 1 2))
;=> 2
Host Interop

Simple Functions

Scorecard

Functional
programming

(defalias Point
"{:x Int :y Int})

Immutability (ann point [Int Int -> Point])

(defn point [X VY]

The REPL Ux X, 2y y})

X (point 1 2))

Ease of
development

|
Vv

(

1
y (point 1 2))
> 2

(:
(:

Host Interop

Higher-order functions

Scorecard

Functional
programming

Immutability

(defn combine [p f]
(f (:x p) (ty p)))

The REPL
(combine (point 1 2) +)
Ease of 5=> 3
development (combine (point 1 2) str)

;=> II12II

Host Interop

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Higher-order functions

j=>

(ann combine
(A1l [a]

[Point [Int Int -> a] -> al))

(defn combine [p f]
(f (:x p) (:y p)))

(combine (point 1 2) +)
5=> 3
(combine (point 1 2) str)

II12II

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Higher-order functions

j=>

(ann combine
(A1l [a]

[Point [Int Int -> a] -> al))

(defn combine [p f]
(f (:x p) (:y p)))

(combine (point 1 2) +)
5=> 3
(combine (point 1 2) str)

II12II

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Type-Based Control flow

(defn to-int [m]
(if (string? m)
(Integer/parseInt m)

m))
(to-int 1)
;=> 1
(to-int "2")

;=> 2

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Type-Based Control flow

(ann to-int
[(U Int Str) -> Int])

(defn to-int [m]
(if (string? m)
(Integer/parseInt m)

m))
(to-int 1)
;=> 1
(to-int "2")

;=> 2

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Type-Based Control flow

(ann to-int
[(U Int Str) -> Int])

(defn to-int [m]
(if (string? m)
(Integer/parseInt m

Int »m))

(to-int 1)
;=> 1
(to-int "2")

;=> 2

"

Str

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Type-Based Control flow

(ann to-int
[(U Int Str) -> Int])

(defn to-int [m]
(if (string? m)
(Integer/parseInt m

Int »m))

(to-int 1)
;=> 1
(to-int "2")

;=> 2

"

Str

Multimethods

Scorecard

Functional
programming

Immutability (defmulti to-int-mm class)

(defmethod to-int-mm String [m]
(Integer/parselInt m))

(defmethod to-int-mm Number [m] m)

The REPL

develoEarf'neer?I (to-int-mm 1) y=> 1
i (to-int-mm "2") ;=> 2

Host Interop

Multimethods

Scorecard

Functional
programming

mmutabiliy (defmulti to—int—mm{§iassy
(defmethod to-int-mm String [m]
(Integer/parseInt m))

The REPL .
(defmethod to-int-mm Number [m] m)
develoEar?er?I (to-int-mm 1) y=> 1
i (to-int-mm "2") ;=> 2

Host Interop

Multimethods

Scorecard

Functional
programming

mmutability (defmulti to-int-mm class)..
(defmethod to-int- mm?StrlngE[m]
(Integer/parseIlnt m))

The REPL
(defmethod to-int-mm Number [m] m)
develoEar?er?I (to-int-mm 1) y=> 1
i (to-int-mm "2") ;=> 2

Host Interop

Multimethods

Scorecard

Functional
programming

Immutability (defmulti to-int-mm class)
(defmethod to-int-mm String [m]
(Integer/parseInt m))

The REPL D)
(defmethod to-int- mm?Numberz[m] m)
develoEar?er?I (to-int-mm 1) ;=> 1
i (to-int-mm "2") ;=> 2

Host Interop

Multimethods

Scorecard
Functional (ann to-int-mm
programming [(U Int Str) -> Int])
Immutability (defmulti to-int-mm class)
(defmethod to-int-mm String [m]
S— (Integer/par;eInt m))
(defmethod to-int-mm Number [m] m)
develfﬁi;’: (to-int-mm 1) ;=> 1
" (to-int-mm "2") ;=> 2
Host Interop

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Multimethods

(ann to-int-mm

[(U Int Str) -> Int])

(defmulti to-int-mm class)

(defmethod to-int-mm Stying [m]
(Integer/parselnt m+

Str

(defmethod to-int-mm Number [m] m)

(to-int-mm 1) ;
(to-int-mm "2") ;

>
>

1
2

L

Int

Multimethods

Scorecard

Functional
programming

(ann to-int-mm
[(U Int Str) -> Int])

Immutability (defmulti to-int-mm class)

(defmethod to-int-mm Stying [m]
(Integer/parselnt m+ Str

(defmethod to-int-mm Number [m] m)

Ease of (to-int-mm 1) ;=> .

development L Int
" (to-int-mm "2") ;=> 2

Host Interop /

The REPL

/
Typed Racket

(prior work)
Design+
N\ Implement

Formalize+Sound

Typed
Clojure

Automatic

Annotations

Design+implement

Formalize

Evaluation

Extensible

lyping
Rules

Symbolic

Execution

Prototype

)\ TC Formalism
1. Based on Occurrence Typing|[1] (big-step semantics)
2. Add Typed Clojure features: HMaps, Multimethods

3. Add (some) Java Interop: Classes, Methods, Fields...

[1] ICFP ’10 - Tobin-Hochstadt, Felleisen

Type soundness

ATC

Theorem Well-typed programs don’t “go wrong”

Well-typed programs

Corollar
g don’t throw null-pointer exceptions

b |

/ Evaluation

Extensible

Typed Racket\ Typed Automatic , Symbolic
. . , Typing ,
(prior work)) Clojure | Annotations Bules Execution
. |
mptemer g fermer o B

Formalize+Sound Evaluation

Empirical Evaluation of Typed Clojure

O

circleci

19k lines of Typed Clojure

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Not Enough FP Support

(let [f (fn [x :- Int] x)]
(f 1))

(map (fn [p :- Point]
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Not Enough FP Support

Scorecard
| x Required!
Functional — X
programming (]_et [-F ('Fn [X Int X)]
(f 1)) -
Immutability
Required!
The REPL
(map (fn [p :-(Point]
Ease of (+ (:x
development (.Y p)))

[(point 1 2) (point 3 4)])

Host Interop

Not Enough FP Support
corecard
iunctional x x Required!

programming (1et ['F (Fn

(f 1))

Immutability
Required!
The REPL -
(map (fn [p :-(Point]
development

(:y p)))
[(point 1 2) (point 3 4)])

Host Interop

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Global Annotation Burden

Global Annotation Burden

(defalias Point
'"{:x Int :y Int})

(ann point [Int Int -> Point])

Scorecard

Functional
programming

Immutability (ann combilne

(A1l [a]

— [Point [Int Int -> a] -> al))

(ann extract-int
["{:value (U Int Str)} -> Int])

Ease of

development (ann extract-int-mm

Burden!x['{:value (U Int Str)} -> Int])

Host Interop

Global Annotation Burden

(defalias Point
'"{:x Int :y Int})

(ann point [Int Int -> Point])

Scorecard

Functional
programming

Immutability (ann combilne

(A1l [a]

— [Point [Int Int -> a] -> al))

(ann extract-int
["{:value (U Int Str)} -> Int])

Ease of
development

(ann extract-int-mm

Burden!x['{:value (U Int Str)} -> Int])

Host Interop

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil)

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

(for [a [1 2 3]]
(inc a))

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

x Huh? But it’s an Int...

Poor Errors with Macros

Scorecard : : : :
(inc nil) ; Expands to (Numbers/inc nil)
Functional Type Error:
programming Static method clojure.lang.Numbers/inc does not accept nil
x Who??
Immutability
(for [a [1 2 3]]
(inc a))
The REPL |
Type Error:
Static method clojure.lang.Numbers/inc does not accept Any
Ease of
development |
(t/for [a([1 2 3]]
Host Interop (inc a))

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

(t/for [atjf ,
(inc a))

x How was I supposed to know about t/for?

Scorecard

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Poor Errors with Macros

(inc nil) ; Expands to (Numbers/inc nil)

Type Error:
Static method clojure.lang.Numbers/inc does not accept nil

x Who??

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

(t/for [atgj .
(inc a))

x How was I supposed to know about t/for?

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability

The REPL

Ease of } x

development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability
.\ Extensible
Typed | Automatic Typing
The REPL . |
(prior work) Clojure Annatmns Rules
Ease of
development

Host Interop

Scorecard: Typed Clojure’s initial design

Functional
programming

Immutability
Typed . \ Extensible\ %
Racket Typed | Automatic Tuo: Symbolic
The REPL - Clojure /Annotations L. © :
(prior work) J Rules Execution
Ease of
development

Host Interop

Part 11
Automatic Annotations

|

Evaluatlon

E ibl
Typed Racket\ Typed },}Fenisrib - Symbolic
(prior work) Clojure gglesg Execution

Prototype Prototype

Design+Implement
Implement Formalize

e Formalize+Sound
S —

Evaluation

In submission:
“Squash the work: A Workflow for Typing Untyped Programs that use Ad-Hoc Data Structures”,
Ambrose Bonnaire-Sergeant, Sam Tobin-Hochstadt

Annotation burden

(ann combine
(A1l [a]
[Point [Int Int -> a] -> al))

(defalias Point
'"{:x Int :y Int})

(ann point [Int Int -> Point])

(ann extract-int (ann extract-int-mm
["{:value (U Int Str)} -> Int]) ['{:value (U Int Str)} -> Int])

Annotation burden

(ann combine
(A1l [a]
[Point [Int Int -> a] -> a]))

(defalias Point
'"{:x Int :y Int})

(ann point [Int Int -> Point])

(ann extract-int (ann extract-int-mm
["{:value (U Int Str)} -> Int]) ['{:value (U Int Str)} -> Int])

B e

/ Evaluation

Typed Racket
(prior work)

Typed Automatic
Clojureg@ Annotations

Design+Implement
Implement
Formalize+Sound

\

Extensible

Symbolic

Execution

Prototype

lyping
Rules

(def forty-two 42) Tool design

(def forty-two 42) lool design
[= {forty-two : Long}

(def forty-two 42) lool design
— [= {forty-two : Long}

| — ——————

Instrument

S —— R

(def forty-two
(track 42 ['forty-two]))

(def forty-two 42) lool design
— [= {forty-two : Long}

[’

Instrument

R —

(def forty-two
(track 42 ['forty-twol]))

» Inference result:
; ['forty-two] : Long
(def forty-two 42)

(def forty-two 42) lool design
— [= {forty-two : Long}

' ’

Instrument

S —

(def forty-two
(track 42 ['forty-twol]))

; Inference result:—_—?’ O
, L'forty-two] : Long Inference Phase

(def forty-two 42) ~ Naive Translation

(def forty-two 42) lool design
— [= {forty-two : Long}

' ’

Instrument

S —

(def forty-two 1
(track 42 ['forty-twol]))

; Inference result s —

(def forty-two 42) ~ Naive Translation

(def forty-two 42) lool design
I [' = {forty-two : Long}
 Inference Phase

Instrument

Global
“Squashing”

(def forty-two
(track 42 ['forty-twol]))

; Inference result s —

(def forty-two 42) ~ Naive Translation

Porting workflow

Porting workflow

Porting workflow

Type error?

Porting workflow

Type error?

Porting workflow

T'ype error?

/m

—

X
| Type checks?

/ Evaluation

Typed Racket\ Typed
(prior work)) Clojure , / Annotations

Design+ Design+Implement
Implement -

Formalize

Formalize+Sound Evaluation

Extensible

Automatic

Symbolic

Execution

Prototype

lyping
Rules

\

)\track

annotate: e, x — A

annotate = infer o collect

)\track

annotate: e, x — A

annotate = infer o collect

“Track and annotate x’s in program e”

)\track

e ————

)\track

e ————

(f {:a 42}) => 42 | ¢

e ———

>\track

S ———

(f {:a 42}) => 42 | ¢

S ——

annotate((f {:a 42}),|f]) ={f:[{:a N} — N|}

>\track

S ———

(f {:a 42}) => 42 | ¢

S ——

annotate((f {:a 42}),|f]) ={f:[{:a N} — N|}

Test

I — e —

)\track

| ———

(f {:a 42}) => 42 | ¢

| ———

annotate((f {:a 42}),|f]) ={f:[{:a N} — N|}

Test Track-me

— —

)\track

(f {:a 42}) => 42 Test

T —————

annotate((f {:a 42}),|f]) ={f:[{:a N} — N|}

Test Track-me Derived type

L I ———

)\track

[ntentionally unsound

Aggressively combines
types to create compact aliases
and recursive types

Tailored for the workflow

/ Evaluation

Typed Racket
(prior work)

Automatic

Typed
Clojure | Annotations

Design-- Design+Implement

\ .
Impleme. Formalize

Evaluation

Formalize+Sound

Extensible

Symbolic

Execution

Prototype

lyping
Rules

Evaluation

Ported 5 open-source
programs (~1500 LOC)

Measured the kinds of
manual changes needed

Auto-generated

types
’ (ann mult [Int Int :-> Int])

Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])

Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])

Auto-generated

types
(ann initial-perm-numbers [(Map Int Int) :-> (Coll Int)])

Auto-generated
types

* (ann mult [Int- :-> Int])
Manual
changes * (ann mult [Intf* :-> Int])

Auto-generated

types *

(ann initial-perm-numbers [(Map @@ Int) :-> (Coll Int)])

(ann initial-perm-numbers [(Map ARy Int) :-> (Coll Int)])

Manual ”

changes

(defn parse-exp [e]

Has an *

interesting (cond
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}

(= 'n? e) {:E :n?}

.+))

(defalias E
(U

:app, :args (Vec E), :fun E}

':false}

:1f, :else E, :test E, :then E}
':lambda, :arg Sym, :arg-type T, :body E}

' - :var, :name Sym}))

types
*(ann parse-exp [Any :-> E])
Has an * (defn parse-exp [e]
(cond

interesting
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}
(= 'n? e) {:E :n?}

)

e N e N e N e s

m rm rm rm rri

Auto-generated

(defalias E

Manual * "{:E ':addl)}
changes i {:E “inej o .
CEEEEEIYE T app, -args (Vec E), :fun E}
'{:E ":false}
'{:E ":1f, :else E, :test E, :then E}
' '{:E '":lambda, :arg Sym, :arg-type T, :body E}
Auto-generated '{:E ':var, :name Sym}))

types
,(ann parse-exp [Any :-> E])
Has an * (defn parse-exp [e]
; (cond

interesting
¢ (symbol? e) {:E :var, :name e}
ype (false? e) {:E :false}
(= 'n? e) {:E :n?}

)

Manual effort

Mostly deleting/upcasting types

Adding missing cases to
(generated) recursive types

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard

Scorecard

Functional
programming

Immutability

The REPL

Ease of } x
development

Automatic annotations makes
porting Clojure programs easier

Host Interop

Part 111
Extensible Typing Rules

|4

Evaluation

Symbolic

Execution

Typed Racket\ Typed Automatic
(prior work)) Clojure | Annotations

Design+ Design+Iimplement
Implement - Prototype

Prototype

Formalize

j Formalize+Sound Evaluation

Problem

(for [a [1 2 3]]
(inc a))

Problem

(for [a [1 2 3]]
(inc a))

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

Problem

How to propagate type information?

Type Error:
Static method clojure.lang.Numbers/inc does not accept Any

Idea

Idea

Allow the user to define custom
typing rules for macros

Roadblock:

Expansion comes before check

Fully expand

v
Type check

v
Run

v

Type

Fully expand

v

chec

v
Run

e

Roadblock:

Expansion comes before check

Time

(let [...]

(cond ...

(+ ...)))

analyze”

analyze®

) || pre-passes”

post-passes
check”

check™

<

1. check”
) check™

\W
m

pre-passes”

post-passes™

analyze”
analyze“

pre-passes”

post-passes

check”
check™

<

Roadblock:

Expansion comes before check

Time || (let [...] (cond ... (+ ...)))
0 || analyze”

1 analyze~” [
c o o "‘ané[l'yze1 Y
: i{\analyze & -
\,

analyze“
Fully expand
pre-passes”
pre-passes”
1 post-passes*
post-passes™
post-passes*®
check”

Type check

Run 12 el - Already

expanded!

; check”
check™

Solution

Allow Typed Clojure to
interleave macroexpansion

and type checking

Evaluation

Extensible

lyping
Rules

Symbolic

Execution

Prototype

/Typed Racket\ Typed Automatic
\ (priorwork)) Clojure | Annotatio

Design+ Design+Implement
Implement -

Formalize

Formalize+Sound Evaluation

Checker controls expansion

| wrote a new
Clojure code analyzer

Time || (let [...] (cond ... (+ ...)))
0 || unanalyzed~”
l || analyze-outer”
2 || run-pre-passes”
3 || check”
1 analyze-outer”
5 run-pre-passes-
6 check” Ve N
7 Y analyze-outer™ "\
3 " | run-pre-passes” Y
9 check”
10 run-post-passes < j
11
12 run-post-passes” | g __ ot
13 check™ B -
14 || run-post-passes*® E d
15 || check< XP a-n

as needed

This was non-trivial

Must also interleave evaluation
Maintains correct lexical scope

[nteracts with Clojure’s type hinting system

Example type checker
with new analyzer

(defn check-expr
"Check an AST noade has the expected type."”
expr expected]
(if (= :unanalyzed (:op expr))
(case <resolved-op-sym-for-expr>
clojure.core/cond (check-special-cond expr expected)
: default case
(check-expr (analyze-outer expr) expected))
(run-post-passes
(check (run-pre-passes expr)

expected))))

Example type checker
with new analyzer

(defn check-expr

I

"Check an AST node has the expected type.

prartzally expr expected]
*(if (= :unanalyzed (:op expr))
expandEd“- (case <resolved-op-sym-for-expr>

clojure.core/cond (check-special-cond expr expected)

: default case
(check-expr (analyze-outer expr) expected))
(run-post-passes
(check (run-pre-passes expr)
expected))))

Example type checker
with new analyzer

(defn check-expr

I

"Check an AST node has the expected type.

prartzally expr expected]
*(if (= :unanalyzed (:op expr))
expandEd“- (case <resolved-op-sym-for-expr>

clojure.core/cond (check-special-cond expr expected)

Cu.S'tOm }’ules * . default case
(check-expr (analyze-outer expr) expected))

(run-post-passes
(check (run-pre-passes expr)
expected))))

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard

Scorecard

Functional
programming

vX
v

} x P Extensible rules Prototype:

Improve errors, check more programs

Immutability

The REPL

Ease of
development

Host Interop

v

Part VI
Symbolic Execution

Extensible

Evaluation

Typed Racket\ Typed Automatic T
. . - yping
(prior work) / Clojure | Annotations Rules

Design+ Design+implement

Prototype Prototype
Implement yp
g Formalize+Sound

Goal: Reduce local annotations

(let [f (fn [x :- Int] x)]
(f 1))

(map (fn [p :- Point]
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Goal: Reduce local annotations

(let [f (fn [x(
(f 1))

(map (fn [p :- Point]
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Goal: Reduce local annotations

(let [f (fn [x(?w\f
(f 1))

(nap (fn [p :-(Point}

(:y p)))
[(point 1 2) (point 3 4)])

Setting: Bidirectional Checking

(let [(fn [x :- ??2?] Xx)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [(fn [x :- ??2?] Xx)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [(fn [x :- ???] Xx)]

(1) W

Must have type of x here

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Setting: Bidirectional Checking

Type checking proceeds outside-in

(let [(fn [x :- ???] Xx)]

(1) W

Must have type of x here

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Must have type of p here

Intuition

(let [f (fn [x :- ???] X)]
(f 1))

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Intuition

(let [f (fn [x :- ???] X)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
[(point 1 2) (point 3 4)])

Intuition

(let [(fn [x :- ??2?] Xx)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
(point 1 2) (point 3 4)])

Intuition

(let [(fn [x :- ??2?] Xx)]

(D) P

(map (fn [p :- 2?2?27
(+ (:x p)

(:y p)))
nt 12) (point 3 4)1)

Approach

New type rule for checking (unannotated) functions:

(let [(fn [x] x)]

(f 1))

Approach

New type rule for checking (unannotated) functions:

(let [(fn [x] x)]

(f 1)) \

The type of a function is its code

Approach

New type rule for checking (unannotated) functions:

(let [(fn [x] x)]

(f 1))

The type of a function is its code
...and the type environment it was “defined” at

Approach

New type rule for checking (unannotated) functions:

(let [(fn [x] x)]

(f 1))
Symbolic Closure Types

Resembles runtime closures, except
executed symbolically

Approach

(let [(fn [x] x)]

4

Application rule?

(f 1))

Approach

(let [(fn [x] x)]

(-F 1U

Tradeoffs

Undecidable in general

However, many local functions
are only used once and are non-recursive

Can rely on top-level annotations to drive
the symbolic execution

Evaluation

/Typed Racket\ Typed
\ (prior work) /) Clojure

Design+
Implement

Formalize+Sound

Automatic

Annotations

Design+implement

Formalize

Evaluation

Extensible

lyping
Rules

Symbolic

Execution

Prototype

Naive formalism

UAPP
[MFe :TQXz)f TI'hles:o

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T

Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T

Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [t ei(ez): T

Naive formalism

UAPP
[MFe :TQXz)f TI'hles:o

UABS I, :c:a(

'FXax)f:TQX(x)f [t ei(ez): T

Naive formalism

UAPP

F, — €1 F@)\(ib)f F, — € .0
UABS ', x:0 l_\fZT
'FXax)f:TQX(x)f [t ei(ez): T

Naive formalism

UAPP
F, |_€1 F@)\(ib)f F, |’€2 . O

UABS ' x:ob f:7

'FXax)f:TQX(x)f [- ei(e2) IvT

Prototype Implementation

Prototype Implementation

(tc ? 1)
=> Int

Prototype Implementation

(tc ? 1)
=> Int

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int]

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int]

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

(tc ? ((fn [x] x) 1))
=> Int

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

¥~ N\
(tc ? ((fn [x] x) 1))
=> Int

Prototype Implementation

(tc ? 1)
=> Int

7

(tc [Int :-> Int] (fn [Xx] X))
=> [Int :-> Int

(tc ? (fn [x] X))
=> (Closure {} (fn [x] X))

¥~ N\
(tc ? ((fn [x] x) 1))

=> Int <_/

Prototype Implementation

(tc ? (map (fn [x] x) [1 2 3]))
=> (Seq Int)

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))
=> (Seq Int)

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq InV

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq InV

(tc ? (map (comp (fn [x] X)
(fn [yl y))
[1 2 3]))

=> (Seqg Int)

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iwil—”/,//’

(tc ? (map (comp (fn [x] X)
(fn [y] y))

[1 2: 31)) A

=> (Seqg Int)

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iwil—”/,//’

(tc ? (map (comp (fn [x}n\x)
(fn [yl y))

[1 2: 31)) A

=> (Seqg Int)

Prototype Implementation

P

(tc ? (map (fn [x] x) [1 2 3]))

=> (Seq Iw:i—”/,//’

(tc ? (map (comp (fn [X4&X
(fn [y?\y)

[1 2: 31)) A

=> (Seqg Int

Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))

1] LICS’88, Giannini & Rocca

Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

(GR (fn [] (fn [] 42))) ;=> 42
(GR (fn [] (fn [] “hello”))) ;=> “hello”

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))

1] LICS’88, Giannini & Rocca

Prototype Implementation

GR is an untypable|1] strongly normalizing term of System F

Evaluating it in plain Clojure, it’s just quirky identity function

GR

v

(let [I (fn [a] a)

k(o [v] (0 [) Challenge: Type check this quirky identity function

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))

(x K)))) (ann id (A1l [a] [a -> a]))
(defn id [x]
(GR (fn [_] (fn [_] x))))
1] LICS’88, Giannini & Rocca

(GR (fn [] (fn [] 42))) ;=> 42
(GR (fn [] (fn [] “hello”))) ;=> “hello”

D))

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

GR

v

(let [I (fn [a]l a)
K (fn [b] (fn [c] b))

D (fn [d] (d d))]
((fn [x] (fn [y] ((y (x I))
(x K))))
D))

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a] [a -> a])

GR
* (fn [x]
(GR (fn [_] (n [_] x)))))

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
(GR (fn [_] (n [_] x)))))

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
H(GR (P[] (tn 11 %)))))

& 4
=> (All [a] [a -> a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
(GRA(fn [_] (fn [_] x)))))

[
=> (All [a] [a -> a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR
* (fn [x]
7iG A(‘c” [_] (fn [_] x)))))

‘Y
=> (All [a] [a -> a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

GR /{
* (fn [x]
7iG A(‘c” [_] (fn [_T7x)))))

‘Y
=> (All [a] [a -> a])

Prototype Implementation

Symbolic closures let us treat GR as a black box
until it is executed symbolically

(tc (A1l [a]l Jda -> a])

AN
";GRV\(;” [_] (fn [_T7x)))))

v

=> (All [a] [a -> a])

Symbolic Closures make the most
of top-level annotations

Functional
programming

Immutability

The REPL

Ease of
development

Host Interop

Scorecard

Scorecard

Functional
programming

VX & Symbolic closure prototype:
v, Checks more programs

Ease of } x
development

Immutability

Host Interop

Conclusion

Typed Clojure is a
sound and practical
optional type system for Clojure

Typed Clojure is a
sound and practical
optional type system for Clojure

Typed Racket\ Typed
(prior work)) Clojure

Design+
Implement
Formalize+Sound
00— R R R ———======——,

Typed Clojure is a
sound and practical
optional type system for Clojure

e T ———————

Evaluation

Typed Racket\ Typed
\ (prior work) / Clojure

Design+
Implement

Formalize+Sound

Typed Clojure is a
sound and practical
optional type system for Clojure

/ Evaluation ‘

/Typed Racket\ Typed Automatic
(prior work) /) Clojure | Annotations

Design+ Design+implement
N\ Implement Formalize

Formalize

j Formalize+Sound Evaluation

Typed Clojure is a
sound and practical
optional type system for Clojure

\—
o~ o

Evaluation

Extensible k.
. Symbolic
lyping .
Execution
Rules

Prototype Prototype

/Typed Racket\ Typed Automatic
\ (priorwork)) Clojure | Annotations

Design+Implement
Implement

\.

Formalize+Sound

Evaluation

Thanks

Extra slides

Type soundness Proof

1 Extend calculus with Java-style throwable errors

2 Make explicit assumptions about Java

3. Add “stuck”, "wrong”, and “error” rules to semantics

4. Shown: Well-typed programs reduce to correct values or errors
» By induction on the reduction derivation, then cases on final red.

rule and final (non-subsump.) typing rule
5. Corollary: Well-typed programs don’t “go wrong”
6. Corollary: Well-typed programs don’t throw null-ptr
exceptions

