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Typed Clojure

Optional type system for Clojure

Supports existing idioms: 
• Local flow typing 
• Heterogeneous maps 
• Java Interop 
• Multimethods [Bonnaire-Sergeant et al.  

ESOP 2016]
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Inferring annotations 
from Tests



Why?

• Gradual typing



Untyped Typed



TypedUntyped

Annotations



Why?

• Gradual typing 
• Unfinished program state



“Based on the current tests, 
what are input/outputs?”

?



“Based on the current tests, 
what are input/outputs?”

Documentation



Why?

• Gradual typing 
• Unfinished program state 
• Help write contracts



Generate contracts

Assert as contract



Untyped 
code This work:
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Dynamic 
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Typed 
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Goal: 
Mostly correct  

annotations

Run tests
Gather 
runtime 

information

Generate 
types

Insert
annotations

Type check 
+ fix type 

errors



Annotations needed

Untyped 
libraries 

Top-level  
typed bindings



Instrumentation



Runtime Instrumentation

(track e path) 
;=> v

Wrap e as v, where path is the 
original source of e.



Top-level typed bindings



Library imports



Example
Γ = {forty-two : Long}



Inferring 
Flat structural types





Track def

Wrap definition



Tracking functions

Wrap and track 
domain + range



Tracking point

Track x, y, and 
return value



Application



point : [Long ? -> ?]



point : [Long Long -> ?]



point : [Long Long -> ?]



point : [Long Long -> ?]



point : [Long Long -> ‘{:x Long :y ?}]



point : [Long Long -> ‘{:x Long :y Long}]



Higher-order functions





map : [? ? -> ?]



map : [[? -> ?] ? -> ?]



map : [[? -> ?] (Seqable Long) -> ?]



map : [[Long -> Long] (Seqable Long) -> ?]

Side effects 
of map



map : [[Long -> Long] (Seqable Long) -> (Seqable Long)]



Recursive HMaps







How to compact?



Heuristic: Group by common 
dispatch entry



Heuristic: Merge by keyset



Heuristic: Ignore contravariance

Is this sound?



Example

Test data Final Type



Naive join
Test data

Naive type



‘{:a (U A2 nil)}

Convert to graph 
with HMaps as 

nodes

‘{:a (U A3 nil)}

‘{:a nil}

A1

A2

A3



‘{:a (U A2 nil)}

‘{:a (U A3 nil)}

‘{:a nil}
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 keyset



‘{:a (U A2 nil)}

‘{:a (U A2 nil)}
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Merge 

nodes on 
keyset



‘{:a (U A1 A2 nil)}

‘{:a (U A2 nil)}
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‘{:a (U A1 nil)}

A1
#{:a}

Merge 
nodes on 

keyset



Future work: 
Polymorphism



[point (dom 0)] 
[point :rng (key :x)]

Idea: Associate hashes 
with known paths

[point (dom 1)] 
[point :rng (key :y)]



Future work

• Implementation 

• Performance? 

• Evaluation 

• Are annotations “good enough” in practice?



Are these real idioms?

Inferring 
  
  

Structural 
Types from Tests



Are these real idioms?
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Are these real idioms?

Inferring 
Polymorphic 

Recursive 
Structural 

Types from Tests



Are these real idioms?

Thanks!

Ambrose Bonnaire-Sergeant
@ambrosebs

https://github.com/clojure/core.typed

https://github.com/clojure/core.typed

