
Ambrose Bonnaire-Sergeant
Sam Tobin-Hochstadt

Inferring Structural Types
from Tests

Typed Clojure

Typed Clojure

Immutable data structures

Hosted on JVM

Lisp-style Macros

Dynamic typing

Java

‘()

*

Clojure

Clojure

Typed Clojure

Optional type system for Clojure

Supports existing idioms:
• Local flow typing
• Heterogeneous maps
• Java Interop
• Multimethods [Bonnaire-Sergeant et al.

ESOP 2016]

Typed Clojure

Annotations

Inferring annotations
from Tests

Why?

• Gradual typing

Untyped Typed

TypedUntyped

Annotations

Why?

• Gradual typing
• Unfinished program state

“Based on the current tests,
what are input/outputs?”

?

“Based on the current tests,
what are input/outputs?”

Documentation

Why?

• Gradual typing
• Unfinished program state
• Help write contracts

Generate contracts

Assert as contract

Untyped
code This work:

Generate
type

annotations

Documentation

Static checking

Dynamic
checking

Typed
code

Goal:
Mostly correct

annotations

Run tests
Gather
runtime

information

Generate
types

Insert
annotations

Type check
+ fix type

errors

Annotations needed

Untyped
libraries

Top-level
typed bindings

Instrumentation

Runtime Instrumentation

(track e path)
;=> v

Wrap e as v, where path is the
original source of e.

Top-level typed bindings

Library imports

Example
Γ = {forty-two : Long}

Inferring
Flat structural types

Track def

Wrap definition

Tracking functions

Wrap and track
domain + range

Tracking point

Track x, y, and
return value

Application

point : [Long ? -> ?]

point : [Long Long -> ?]

point : [Long Long -> ?]

point : [Long Long -> ?]

point : [Long Long -> ‘{:x Long :y ?}]

point : [Long Long -> ‘{:x Long :y Long}]

Higher-order functions

map : [? ? -> ?]

map : [[? -> ?] ? -> ?]

map : [[? -> ?] (Seqable Long) -> ?]

map : [[Long -> Long] (Seqable Long) -> ?]

Side effects
of map

map : [[Long -> Long] (Seqable Long) -> (Seqable Long)]

Recursive HMaps

How to compact?

Heuristic: Group by common
dispatch entry

Heuristic: Merge by keyset

Heuristic: Ignore contravariance

Is this sound?

Example

Test data Final Type

Naive join
Test data

Naive type

‘{:a (U A2 nil)}

Convert to graph
with HMaps as

nodes

‘{:a (U A3 nil)}

‘{:a nil}

A1

A2

A3

‘{:a (U A2 nil)}

‘{:a (U A3 nil)}

‘{:a nil}

A1

A2

A3

#{:a}

#{:a}

#{:a}

Label by
 keyset

‘{:a (U A2 nil)}

‘{:a (U A2 nil)}

A1

A2

#{:a}

#{:a}
Merge

nodes on
keyset

‘{:a (U A1 A2 nil)}

‘{:a (U A2 nil)}

A1

A2

#{:a}

#{:a}
Merge

nodes on
keyset

‘{:a (U A1 nil)}

A1
#{:a}

Merge
nodes on

keyset

Future work:
Polymorphism

[point (dom 0)]
[point :rng (key :x)]

Idea: Associate hashes
with known paths

[point (dom 1)]
[point :rng (key :y)]

Future work

• Implementation

• Performance?

• Evaluation

• Are annotations “good enough” in practice?

Are these real idioms?

Inferring

Structural
Types from Tests

Are these real idioms?

Inferring

Recursive
Structural

Types from Tests

Are these real idioms?

Inferring
Polymorphic

Recursive
Structural

Types from Tests

Are these real idioms?

Thanks!

Ambrose Bonnaire-Sergeant
@ambrosebs

https://github.com/clojure/core.typed

https://github.com/clojure/core.typed

