
Typed Clojure
in

Theory and Practice

Ambrose Bonnaire-Sergeant

Immutable data structures

Clojure

Hosted on JVM

Lisp-style Macros

Dynamic typing

Java

(for […])

¯_(ツ)_/¯

Functional style (map f (filter g …))

(defn point [x y] {:x x, :y y})

(def p (point 1 2))
;=> {:x 1 :y 2}

(assoc p :x 3)
;=> {:x 3 :y 2}
(dissoc p :y)
;=> {:x 1}
(get p :x)
;=> 1

Global function

Immutable maps

Assoc-iate entry

Dissoc-iate entry

Global definition

Lookup entry

(defn upper-case [s]
 (when s
 (.toUpperCase s)))

(upper-case nil)
;=> nil

(upper-case “abc”)
;=> “ABC”

Java interop Java

Null test
Method call

(defmacro when [t body]
 `(if ~t ~body nil))

(-> {} ; {}
 (assoc :x 3) ; {:x 3}
 (assoc :y 4)) ; {:x 3 :y 4}
;=> {:x 3 :y 4}

(->> [1 2 3 4] ; [1 2 3 4]
 (map inc) ; (2 3 4 5)
 (filter even?)) ; (2 4)
;=> (2 4)

Macro definition

Macros

“Thread first” macro

“Thread last” macro

(-> {:ms 0}
 (update :ms inc))
;=> {:msg 1}

(def tick (atom {:ms 0}))

(swap! tick update :ms inc)
; {:ms 1}

Higher-order functions

Update map entry

Atomic swap

Create Mutable atom

(defmulti subst
 “Apply substitution s on expression m.”
 (fn [m s] (:op m))

(defmethod subst :if [m s]
 (-> m
 (update :test subst s)
 (update :then subst s)
 (update :else subst s)))

(defmethod subst :var [m s]
 (-> m
 (update :name #(or (get s %) %))))

Multimethods

Dispatch on :op entry

“if ” case

“var” case

Define multimethod

(def add-then-filter
 (comp (map inc)
 (filter even?)))

(sequence add-then-filter [1 2 3 4])
;=> (2 4)

Transducers

Transducer definition

Transducer usage

Transducers are composable, algorithmic transformations

Clojure’s Runtime verification

Better suited for
static analysis

Clojure.spec

Transducers

Top-level Functions

Polymorphic functions

Asynchronous Channels

Heterogeneous maps

Multimethods
}

Optional Type
system

Typed Clojure
=

+
Clojure

Typed Clojure

Bidirectional Type Checking

Occurrence typing (flow sensitive)

Heterogeneous Maps

Check idiomatic Clojure code

Prevents Null-pointer exceptions

Typed Clojure is a sound and practical
optional type system for Clojure.

Thesis Statement

- Typed Clojure is an optional type system for Clojure.

- Typed Clojure is sound.

- Typed Clojure is practical.

- Typed Clojure is an optional type system for Clojure.
- Target idiomatic Clojure code
- Type checking is opt-in

- Typed Clojure is sound.
- Formal model of core type system features
- Prove type soundness for model

- Typed Clojure is practical.
- Type system supports actual Clojure usage patterns.
- Address user feedback.

Typed Clojure is a sound and practical
optional type system for Clojure.

Typed Clojure is a sound and practical
optional type system for Clojure.

Thesis Statement

Part 1: Initial design & Evaluation

(ann upper-case [(U Str nil) -> (U Str nil)])
(defn upper-case [s]
 (when s
 (.toUpperCase s)))

Bidirectional Type
Checking

Top-level
annotations

Type-based control flow

(ann upper-case [(U Str nil) -> (U Str nil)])
(defn upper-case [s]
 (when s
 (.toUpperCase s))) Refined

type via
occurrence typing

Str

Explicit null
type

(ann upper-case [(U nil Str) -> (U nil Str)])
(defn upper-case [s]
 (when s
 (.toUpperCase s)))

Avoiding null-pointer
exceptions

 (U nil Str)

 Str
Evaluation 62/62 methods avoid null-pointer exceptions

• Theory: We formalize Typed Clojure, including its characteristic features like
hash-maps, multimethods, and Java interoperability, and prove the model
type sound.

• Practice: We present an empirical study of real-world Typed Clojure usage in
over 19,000 lines of code, showing its features correspond to actual usage
patterns.

• Published: “Practical Optional Types for Clojure”, Ambrose Bonnaire-Sergeant,
Rowan Davies, Sam Tobin-Hochstadt; ESOP 2016

Part 1: Initial design & Evaluation
(completed)

Typed Clojure is a sound and practical
optional type system for Clojure.

Thesis Statement

Part 1: Initial design & Evaluation
Part 2: Automatic Annotations

Annotations needed

Untyped
libraries

Top-level
typed bindings

Runtime Inference
Γ = {forty-two : Long}

• Theory: We design and formalize an approach to automatically generating
top-level type annotations based on example executions.

• Practice: We implement and evaluate our algorithm on real Clojure programs.
We measure the reduction in the human annotation burden with an empirical
study on the number of manual changes needed to type check a program.

• To be submitted: PLDI 2019 (Fall 2018)

Part 2: Automatic Annotations
(in progress)

Typed Clojure is a sound and practical
optional type system for Clojure.

Thesis Statement

Part 1: Initial design & Evaluation
Part 2: Automatic Annotations

Part 3: Support checking more programs

(let [f (fn [a] (inc a))]
 (f 1))

Anonymous functions

Hard to check

Need annotation!

(let [f (fn [a] (inc a))]
 (f 1))

Anonymous functions

(let [f …]
 ((fn [a] (inc a)) 1))

Hard to check

Easier to check

Need annotation!

Int

Delay check to
occurrences

(ann inc-val [‘{:val Int} -> ‘{:val Int}])
(defn inc-val [m]
 (update m :val (fn [v] (inc v))))

Polymorphic Higher-order functions

Polymorphic function cannot
propagate information to function
arguments (must check arguments

before solving polymorphic variables)

Need type!

Hard to check

(ann inc-val [‘{:val Int} -> ‘{:val Int}])
(defn inc-val [m]
 (update m :val (fn [v] (inc v))))

Polymorphic Higher-order functions

Hard to check

(deftyperule update [m k f]
 `(assoc ~m ~k (~f (get ~m ~k))))

(ann inc-val [‘{:val Int} -> ‘{:val Int}])
(defn inc-val [m]
 (update m :val (fn [v] (inc v))))

Polymorphic Higher-order functions

Hard to check

Easier to check

(ann inc-val [‘{:val Int} -> ‘{:val Int}])
(defn inc-val [m]
 (assoc m :val ((fn [v] (inc v)) (get m :val)))

Int

(deftyperule update [m k f]
 `(assoc ~m ~k (~f (get ~m ~k))))

Apply type rule

• Type checking interleaved with expansion: We motivate and describe how to
convert Typed Clojure from a type system that only checks fully expanded
programs to one that incrementally checks partially expanded programs, and
present an implementation.

• Extensible type rules: We describe and implement an extensible system to
define custom type rules for usages of top-level functions and macros and study
how they improve the inference of core Clojure idioms.

• Symbolic analysis: We describe and implement symbolic evaluation strategies
for Clojure programs and study how many more programs can be checked.

Part 3: Support checking more programs
(in progress)

Typed Clojure is a sound and practical
optional type system for Clojure.

Thesis Statement

Part 1: Initial design & Evaluation
Part 2: Automatic Annotations

Part 3: Support checking more programs
(Backup Part 3: Automatic Annotations for clojure.spec)

Repurpose automation technology: We describe how to automatically generate
clojure.spec annotations (“specs”) for existing programs by reusing most of the the
infrastructure for automatic Typed Clojure annotations. We present a formal model
of clojure.spec (an existing and popular runtime verification tool for Clojure) and
implement the model in Redex.
Test effectiveness of Annotation tool: Ensure high quality specs are generated,
and automatically test over hundreds of projects.
Study how Clojure is used in real projects: We conduct a study of general
Clojure idioms and practices by generating, enforcing, and exercising specs across
hundreds of projects, as well as analyzing design choices in Typed Clojure’s type
system, clojure.spec’s features, and our automatic annotation tool.

Backup plan: Automatic Annotations
for clojure.spec

Timeline
Finish formal model of Annotation Tool

Carry out Auto Annotation experiments

Submit PLDI paper for Auto Annotations

Improve & evaluation Extensible typing rules

Write dissertation

August 2018

Sept-Oct 2018

Nov 2018

Dec 2018

Jan-May 2019

DefendJune 2019

Thanks

