
Prototypal
Inheritance

Ambrose Bonnaire-Sergeant

Some things are
more convenient

with computers…

Your chair…

I want one
like that!

…can I’ve a copy?

Your chair…

You want to
attach rockers…

You want to
attach rockers…

You want to
attach rockers…

but keep the original!

Your chair…

Your chair’s
model

is defective

Your chair’s
model

is defective

Your chair’s
model

is defective

Fix each one?

Fix each one?

…or fix them
all at once!

Physical objects
don’t work like that!

Computer
representations of

objects are more flexible

This talk:
Prototypal Objects

What is a prototype?

1. a first, typical or preliminary model of something, especially a machine, 
from which other forms are developed or copied.

pro·to·type
noun

…can I’ve a copy?

Prototype

Copy Prototype

Inheritance

Notation

 Object.create()

Notation

 Object.create()=

Notation

Object.create(<prototype>)

 Object.create()

create a new object with given prototype

=

Notation

You want to
attach rockers…

but keep the original!

Change

Change

Commands Result

= Object.create();

Commands Result

= Object.create();

Commands Result

= Object.create();

.rockers = ;

Commands Result

= Object.create();

.rockers = ;

Commands Result

= Object.create();

.rockers = ;

Commands Result

.redPillow = ;

= Object.create();

.rockers = ;

Commands Result

.redPillow = ;

…fix them
all at once!

Shared
State

Share

Share

Share

Commands Result

= Object.create();

Commands Result

= Object.create();

= Object.create();

Commands Result

= Object.create();

= Object.create();

.redPillow = ;

Commands Result

= Object.create();

= Object.create();

.redPillow = ;

.rockers = ;

Commands Result

Objects
are prototypes

Objects
are prototypes

Objects =
prototypes

Chain

Chain

Chain

Chain

Chain

Differential
Inheritance

Commands Result

Commands Result
= Object.create();

Commands Result
= Object.create();

.redPillow = ;

Commands Result
= Object.create();

.redPillow = ;

= Object.create();

Commands Result
= Object.create();

.redPillow = ;

.yellowPillow = ;

= Object.create();

Objects pass
messages

To:
Message

To:
Message

To:

Re:

Message

To:

Re:

Message

To:

Re:

Message

To:

Re:

Message

Commands Result

Commands Result

.redPillow = ;

Commands Result

.redPillow = ;

.redPillow

Commands Result

.redPillow = ;

.redPillow

.redPillow

Commands Result

.redPillow = ;

.redPillow

.redPillow

Objects
delegate to

prototypes

has proto

To:

has proto

Delegation
To:

has proto

Delegation
To:

has proto
Re:

Delegation
To:

has proto
Re:

Delegation
To:

has proto
Re:

Commands Result

Commands Result
= Object.create();

Commands Result

.yellowPillow = ;

= Object.create();

Commands Result

.yellowPillow = ;

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

.redPillow

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

.redPillow

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

.redPillow

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

.redPillow

= Object.create();

.redPillow

Commands Result

.yellowPillow = ;

.redPillow

= Object.create();

.redPillow

Objects
have

behavior

pillowCalc() =

To:
Pillow
count?

pillowCalc() =

Behavior
To:

Pillow
count?

pillowCalc() =

Behavior
To:

Pillow
count?

pillowCalc() =Re:
1

Behavior
To:

Pillow
count?

1
pillowCalc() =Re:

1

Prototypes
serve

descendants

has proto
pillowCalc() =

has proto
pillowCalc() =

To:
Pillow
count?

has proto
pillowCalc() =

To:
Pillow
count?

this

has proto
pillowCalc() =

To:
Pillow
count?

this

has proto
pillowCalc() =

To:
Pillow
count?

this

has proto

Service

pillowCalc() =

this

To:
Pillow
count?

this

has proto

Service

pillowCalc() =

this

To:
Pillow
count?

this

Re:
2

has proto

Service

pillowCalc() =

this

To:
Pillow
count?2

this

Re:
2

The essence of
prototypal
objects:

Objects
are prototypes

Objects
are prototypes

Objects =
prototypes

Objects =
prototypes

Prototypes
share state with

children

Prototypes
share state with

children

Prototypes
share state with

children

Objects
communicate

via messages

Objects
communicate

via messages

Prototypes
serve children

Prototypes
serve children

this

JavaScript is
prototypes

at the bottom

JavaScript

JavaScript

Prototypes

JavaScript

Prototypes Object.create()
obj.__proto__
function(){this}

JavaScript

Prototypes

Constructor
pattern

Object.create()
obj.__proto__
function(){this}

uses

JavaScript

Prototypes

Constructor
pattern

Object.create()
obj.__proto__
function(){this}

new C()
C.prototype
P.constructor uses

instanceof

JavaScript

Prototypes

Constructor
pattern

ES6 Classes

Object.create()
obj.__proto__
function(){this}

new C()
C.prototype
P.constructor

uses
uses

instanceof

JavaScript

Prototypes

Constructor
pattern

ES6 Classes

Object.create()
obj.__proto__
function(){this}

new C()
C.prototype
P.constructor

class C {…} uses
uses

instanceof

JavaScript

Prototypes

Constructor
pattern

ES6 Classes

Object.create()
obj.__proto__
function(){this}

new C()
C.prototype
P.constructor

class C {…} uses
uses
This talk

instanceof

JavaScript

Prototypes

Constructor
pattern

ES6 Classes

Object.create()
obj.__proto__
function(){this}

new C()
C.prototype
P.constructor

class C {…} uses
uses
This talk

instanceof

Thanks!
ambrosebs.com

http://ambrosebs.com

