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more convenient 

with computers…
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but keep the original!



Your chair… 
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…or fix them 
all at once!



Physical objects 
don’t work like that!



Computer 
representations of 

objects are more flexible



This talk: 
Prototypal Objects



What is a prototype?

1. a first, typical or preliminary model of something, especially a machine, 
from which other forms are developed or copied.

pro·to·type 
noun
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Inheritance



Notation
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…fix them 
all at once!
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State
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Objects 
are prototypes
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Objects = 
prototypes
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Differential 
Inheritance
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Objects pass 
messages
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Objects 
delegate to 

prototypes
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Objects 
have 

behavior





pillowCalc() =
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Prototypes 
serve 

descendants
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The essence of 
prototypal 
objects:



Objects 
are prototypes



Objects 
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Objects = 
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Prototypes 
share state with 

children
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Prototypes 
serve children



Prototypes 
serve children

this



JavaScript is 
prototypes 

at the bottom
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