Qualifying Exam

Ambrose Bonnaire-Sergeant (0003410123)
April 4, 2018

Contents
1 Question 1 3
1.1 Dynamic tracing Performance 3
1.1.1 Space complexity of dynamic tracing 3
1.1.2 Time complexity of dynamic tracing 3
1.2 Space complexity of type inference 4
1.3 Time complexity of type inference 4
1.3.1 Join 5
1.3.2 Naive type environment creation)
1.3.3 Naive type environment creation (optimized))
1.3.4 Squash Vertically 5
1.3.5 Squash Horizontally 6
1.3.6 Overall time complexity 6
1.4 Benchmarkso 7
1.4.1 Benchmark 1: 2tags 7
1.4.2 Benchmark 2: Many tags 7
1.4.3 Results 9
1.5 Can space use be bounded by reducing traces as collected? 9
1.6 Daikon 10
1.6.1 Daikon’s expressivity vs Typed Clojure’s dynamic inference 10
1.6.2 Space/time overhead of Daikon’s dynamic tracing 10
1.6.3 Space/time overhead of Daikon’s type inference 11
1.6.4 Checking Daikon’s invariants in a refinement type system 12
2 Question 2 13
2.1 clojure.spec 13
2.2 Function specifications in clojure.spec 13
2.3 Research questions 14
2.4 Methodology 15
241 S0urces ... 15
2.4.2 Frequency Data gathering 15
2.4.3 Project Samples oL 16
2.5 Experiment 1: Frequency of fspec 17

3 Question 3
3.1 Formalmodel
3.2 Consistency propertyo
3.3 Noteson Redexmodel

A Q2: Experiment 1

B Q2: Experiment 2

21
21
21
22

28

29

1 Question 1

Analyze the space and time complexity of your approach to dynamic
tracing & subsequent type inference for Typed Clojure. Are you able
to bound space use at all by reducing traces as they are collected?
Please analyze a related system, Daikon
(https://plse.cs.washington.edu/daikon/), along the same lines. How
expressive are Daikons invariants compared to yours? How much space
and runtime overhead does it impose? If Daikon’s inferred invariants
were to become part of a (refinement) type system, how powerful would
it need to be?

We begin by analyzing our approach to dynamic tracing and type inference
for Typed Clojure’s dynamic type inference.

1.1 Dynamic tracing Performance

To avoid the full cost of naive dynamic tracing, we leverage several known
techniques from the higher-order contract checking literature.

1.1.1 Space complexity of dynamic tracing

The space complexity of dynamic tracing in Typed Clojure is similar to proxy-
based higher-order contract checking (so, reasonable, with some constant over-
head).

Map and function wrappers are space-efficient with respect to the stack,
with redundant wrappers of the same type collapsing to at most one level of
wrapping.

Some structural sharing of tracking data helps reduce the memory footprint
of the tracking results. Specifically, the original source of a value is stored in
a “path” (similar to a blame label in contract systems), and appending to this
path uses constant heap space since it is represented using a immutable vector
with structural sharing.

1.1.2 Time complexity of dynamic tracing

Most tracked Clojure collections are traversed lazily as they are used, so incurs
a O(1) cost to each lookup. This includes (potentially infinite) lazy sequences
and hash maps. Vectors are not currently lazily traversed, and we have not
tried any vector-heavy benchmarks to observe the performance effect (but we
hypothesize matrix-heavy code would suffer from a significant tracking penalty).

Functions are similarly wrapped a la higher-order contract checking and
tracked when invoked, so incur an overhead on every invocation. Non-Clojure
Objects simply record their class (including arrays).

I number of collected inference results
U maximum number of union members (unordered types)
D maximum depth of types

W maximum width of non-union types (ordered types) (eg. HMap entries,
function positions)

A number of aliases in alias environment (reachable from the type envi-
ronment)

Figure 1: Reference for variables used in time complexity analysis

1.2 Space complexity of type inference

The type inference algorithm uses a linear amount of memory with respect to
the number of distinct HMap types in the input. At its largest space usage, the
algorithm creates a new alias for each HMap object.

However, aliases consist of a symbol and an entry in a hash-map, so the
constant factors are small.

The algorithm also can use more space as more samples are processed. For
example, a large union type could be accumulated by combining several samples.

1.3 Time complexity of type inference

To analyze the time complexity of dynamic type inference (after gathering sam-
ples), we reference several variables defined in Figure 1. The variable I denotes
the number of samples collected during dynamic tracing. The variable U denotes
the maximum width of a union during the entire execution of type inference.
The maximum depth and width of non-union types are denoted by D and W
respectively. Finally, A references the number of (reachable) aliases in the alias
environment.

The entire algorithm is split into several passes, many of which rely on the
join function, which we analyze in Section 1.3.1.

First, a naive type environment is generated. Two approaches are analyzed,
one slow (Section 1.3.2), and one fast (Section 1.3.3). The implementation uses
the second version in practice.

Then several passes are applied to the resulting type and alias environ-
ments. First squash_vertically (Section 1.3.4) creates local recursive types.
Then squash_horizontally (Section 1.3.5) merges similar recursive types that
occur in different type/alias environment entries. The overall time complexity
is summarized in Section 1.3.6.

1.3.1 Join
join(D, W, U) = 0(D * max(W, U"2))

Joining two union types involves joining all the combinations of the union
members (U? joins).

Joining two non-union types that are not the same sort of type is constant.

Joining two non-union types that are the same sort of type joins each of the
members of its types pairwise, of which the maximum number is W.

A maximum number of D recursive joins can occur, and max (W, U?) work
is done at each level, so time complexity is O(D x maz(W, U?)).

1.3.2 Naive type environment creation

1. Build naive type environment. Folds over inference results, ‘update’ from the
top of each type. Naive algorithm traverses depth/width of type

naive(I, D, W, U) = 0(I * (D + join(D, W, U)))

Iterate over each inference result, there are I of them.

Build up a sparse type from the inference result, maximum depth D.

Join this type with the existing type taking join(D, W,U).

Since we do (D + join(D,W,U)) work for each result, time complexity is
O(I % (D + join(D,W,U))).

1.3.3 Naive type environment creation (optimized)

1. Build naive type environment (optimized) Group inference results by path
prefixes. Then join the groups from the longest prefixes first, and use previous
results to avoid recalulating joins.

optimizedl' (I, D,W,U) = O(I % (D + join(D,W,U)))

1.3.4 Squash Vertically

Iterate down each type in the type environment and merge similarly ”tagged”
maps, resulting in a possibly recursive type.
Each iteration involves:

e alias-hmap-type Ensure each HMap in the current type corresponds to an
alias.

— Involves walking the current type once
— alias_hmap_type(D,W,U) = O(D « W = U)

e squash-all Each alias mentioned in the current type is ”squashed”.

— At worst, could join each alias together.

— squash_all(A, D,W,U) = O(A x join(D,W,U))

squash_vertically(T', A, D,W,U) = O(|T'| *x (D« W « U + A x join(D, W, U)))

1.3.5 Squash Horizontally

Tterate over the reachable aliases (from the type environment) several times,
merging based on several criteria.
These are the passes:

o group-req-keys Merge HMap aliases with similar keysets, but don’t move
tagged maps

— First groups aliases into groups indexed by their keysets, then joins
those groups together, merging each group into its own alias.

— group_req_keys(A, D,W,U) = O(A+ A« join(D « W % U))
o group-likely-tag Merge HMap aliases with the same tag key/value pair

— First groups aliases into groups indexed by their likely tag key /value,
then joins those groups together, merging each group into its own
alias.

— group_likely tag(A, D,W,U) = O(A + A x join(D x W x U))

o group-likely-tag-key Merge HMap aliases with the same tag key. This
gathers HMaps with the same tag key into the large unions seen in the
algorithm’s final output.

— First groups aliases into groups indexed by their likely tag key, then
joins those groups together, merging each group into its own alias.

— group_likely_tag_key(A, D,W,U) = O(A+ A join(D « W = U))

squash_horizontally(T', A, D,W,U) = O(group-req_keys(A, D,W,U)
+ group-likely_tag(A, D, W,U)
+ group_likely_tag_key(A, D, W, U))

1.3.6 Overall time complexity

The overall time complexity is the sum of the previous passes.

alg(T', A, I, D,W,U) = O(optimizedl'(I, D, W,U)
+ squash_vertically(T'y A, D, W, U)
+ squash_horizontally(T', A, D,W,U))

Based on this analysis, we have a few observations:

e the larger the number of aliases, the slower the algorithm

— both the phases that merge aliases traverse and potentially the aliases
in the type environment together.

e the larger the size of unions, the slower the algorithm

— join is quadratic in the size of the largest union.

1.4 Benchmarks

To test the time complexity of the implementation of the type reconstruction
algorithm, we devise several benchmarks.

The benchmarks are designed to emperically determine the influence of the
size of the largest union type on the time complexity of the type reconstruction
algorithm.

1.4.1 Benchmark 1: 2 tags

The first benchmark generates deep inputs using one of 2 "tagged” maps. This
is equivalent to seeding the algorithm with a large Lisp-style list with cons/null
constructors.

Since there is only one interesting tagged map, the early phases of the algo-
rithm should collapse (or ”squash”) these repeated tag occurrences into a small
(recursive) union, thus minimizing the size of the largest union in the later stages
of the algorithm.

Benchmark 1 takes as input the number of ”cons” tagged maps to wrap
around a "null” tag. For example, input 5 starts the algorithm with the type

’{:tag ’:cous,
:cdr ’{:tag ’:cons,
:cdr ’{:tag ’:coms,
:cdr ’{:tag ’:comns,
tcdr ’{:tag ’:coms,
icdr ’{:tag ’:null}}}}}}

The final output of the algorithm is a recursive type with 2 tags.
(defalias Tag (U ’{:tag ’:comns, :cdr Tag} ’{:tag ’:null}))

All inputs to Benchmark 1 greater than 0 result in this same calculated type.

1.4.2 Benchmark 2: Many tags

The second benchmark forces the largest union to be linear to the depth of the
input type. It achieves this with a similar approach to Benchmark 1, except
every level of the initial type is tagged with a unique type.

Since the recursive type reconstruction only collapses identically-tagged maps,
we preserve a large union throughout the algorith.

We demonstrate the behavior of Benchmark 2 at depth 5. This is the initial
type we use to recover types from:

’{:tag ’:cons5,
:cdr ’{:tag ’:cons4,
:cdr ’{:tag ’:cons3,
rcdr ’{:tag ’:cons2,
:cdr ’{:tag ’:comnsl,
icdr ’{:tag ’:null}}}}}}

And, since the input has 6 unique tags, our final recursive type has a recursive
union of width 6.

(defalias

Tag

QY
’{:tag ’:comnsl, :cdr Tag}
’{:tag ’:cons2, :cdr Tag}
’{:tag ’:cons3, :cdr Tag}
’{:tag ’:cons4, :cdr Tag}
’{:tag ’:consb, :cdr Tag}
’{:tag ’:null}))

The width of the reconstructed type is linear in the depth of the input type.
For example, Benchmark 2 with depth 10 results in:

(defalias

Tag

v
’{:tag ’:comnsl, :cdr Tag}
’{:tag ’:cons2, :cdr Tag}
’{:tag ’:cons3, :cdr Tag}
’{:tag ’:cons4, :cdr Tag}
’{:tag ’:consb, :cdr Tag}
’{:tag ’:cons6, :cdr Tag}
’{:tag ’:cons7, :cdr Tag}
’{:tag ’:cons8, :cdr Tag}
’{:tag ’:cons9, :cdr Tag}
’{:tag ’:consl0, :cdr Tag}
’{:tag ’:null}))

1.4.3 Results

Time (ms) to generate types at depth

30000

20000 ,

milliseconds
N

10000 7

-

20 40 60 80 100 120

input depth

Benchmark 1 is represented by the red solid line, benchmark 2 by the blue
dotted line.

The graph shows the performance of Benchmark 1 is constant, because the
width of the largest union is always 2 in an early phase of the reconstruction
algorithm.

The results for Benchmark 2 show the reconstruction algorithm is quadratic
with respect to the size of the largest union.

These observations are consistent with the prior theoretical analysis.

1.5 Can space use be bounded by reducing traces as col-
lected?

Traces in Typed Clojure’s dynamic analysis are accumulated online, and then
folded into a type environment offline. However, this fold operation is commu-
tative with respect to the order of traces, so performing this fold online would
eliminate the need to store traces in memory.

Space is reduced further, then, by leveraging join to eagerly simplify the
accumulated type environment. For example, heterogeneous maps with simi-
lar keysets could merged, possibily using optional key entries, saving space by
preventing very large redundant unions.

It is unclear if it is possible to perform more sophisticated analyses online,
in particular the recursive type reconstruction algorithm. Since the resulting
annotations are very compressed compared to intermediate points in the anal-
ysis, fully or partially performing this analysis online may drastically decrease
space usage where recursively defined maps are used, and very deep examples
are found.

1.6 Daikon

Daikon is a related system to Typed Clojure’s dynamic type inference. How-
ever, Daikon is built for “invariant detection”, while our system is designed for
“dynamic type inference” or “value profiling”.

There are two common implementation strategies for such tools. The first
strategy, “ruling-out” (for invariant detection), assumes all invariants are true
and then use runtime analysis results to rule out impossible invariants. The
second “building-up” strategy (for dynamic type inference) assumes nothing
and then uses runtime analysis results to build up invariant/type knowledge.

Both strategies have different space behavior with respect to representing the
set of known invariants. The ruling-out strategy typically uses a lot of memory
at the beginning, but then can free memory as it rules out invariants. For exam-
ple, if odd(x) and even(x) are assumed, observing x = 1 means we can delete
and free the memory recording even(x). Alternatively, the building-up strat-
egy uses the least memory storing known invariants/types at the beginning, but
increases memory usage as more the more samples are collected. For example,
if we know x : Bottom, and we observe x = "a" and x = 1 at different points
in the program, we must use more memory to store the union x : String U
Integer in our set of known invariants.

Examples of invariant detection tools include Daikon [3], DIDUCE [4], and
Carrot [8], and typically enhance statically typed languages with more expres-
sive types or contracts. Examples of dynamic type inference include Rubydust
[5], JSTrace [9], and TypeDevil [7], and typically target untyped languages.

1.6.1 Daikon’s expressivity vs Typed Clojure’s dynamic inference

Daikon can reason about very expressive relationships between variables using
properties like ordering (x < y), linear relationships (y = az + b), and contain-
ment (x € y). It also supports reasoning with “derived variables” like fields
(z.f), and array accesses (a[i]).

Typed Clojure’s dynamic inference can record heterogeneous data structures
like vectors and hash-maps, but otherwise cannot express relationships between
variables.

There are several reasons for this. The most prominent is that Daikon pri-
marily targets Java-like languages, so inferring simple type information would
be redundant with the explicit typing disciplines of these languages. On the
other hand, the process of moving from Clojure to Typed Clojure mostly in-
volves writing simple type signatures without dependencies between variables.
Typed Clojure recovers relevant dependent information via occurrence typing,
and gives the option to manually annotate necessary dependencies in function
signatures when needed.

1.6.2 Space/time overhead of Daikon’s dynamic tracing

Performance of dynamic tracing is not directly addressed in the Daikon litera-
ture, who only provide complexity analyses and optimizations for storing and

10

checking invariants after samples have been collected.

I have manually examined Chicory (the Java front-end to Daikon) to see
how dynamic tracing is implemented. I found that Daikon records the value of
all variables in scope at each method entry/exit point 1. Then, to record values
in Daikon, the following algorithm is used:

o If the value is a Java primitive, record its value.

e If the value is an array, traverse its contents and record identity hash codes
and/or primitive values.

e Otherwise, record the class of the current object.

Notice this algorithm is non-recursive—while arrays are traversed eagerly,
they are only traversed one level via an identity hash code summary (the closest
equivalent to pointer addresses on the JVM). This is significantly different to
Typed Clojure’s value tracing algorithm, which recursively (but lazily) traverses
potentially-deep data structures.

Another difference is that Typed Clojure’s dynamic tracing only tracks val-
ues for arguments/returns of a function, and ignores any variables that in are
scope. There are several reasons behind this decision. First, Java-like object-
oriented languages use fields as implicit arguments to methods, and Daikon dis-
tinguishes method-level, and class-level invariants which is achieved by checking
class-level invariants during method calls. In Clojure, methods are replaced with
pure functions (their output is defined only by the explicitly passed arguments),
so the method/class-level distinction is not applicable.

Second, Daikon chooses to reason about local mutation in Java-like lan-
guages, and so must record the values of the same variables different pro-
gram points to observe mutation. However, local unsynchronized mutation is
non-idiomatic in Clojure so re-tracking variables is almost always redundant—
mutation is often via synchronized global variables that can be instrumented
once-and-for-all.

1.6.3 Space/time overhead of Daikon’s type inference

The overhead of likely invariant detection is described by Perkins and Ernst [6].
They analyze the overhead of storing and checking the set of invariants that are
currently true. Their presentation includes a simple incremental algorithm that
features no optimizations, then they propose several candidate optimizations
and emperically compare the performance of each approach.

The space complexity of the simple incremental algorithm is dominated by
the size of the grammar of properties. For example, if the grammar of properties
consists of = and even, with 3 variables x, y, z, the initial (and largest) set of
invariant assumptions is x = y, y = z, x = z, even(x), even(y), and even(z). For
reference, Daikon enables 152 properties by default, with 12 “derived variables”,
the latter of which provide properties on composite variables like a[z] = a[z].

mplemented in daikon.chicory.DaikonVariableInfo

11

After a static analysis pass ruling out nonsensical invariants, the space usage is
at least O(v?), where v is the number of variables in scope.

The time complexity of checking invariants for each sample is similarly dom-
inated by the size of the grammar of properties. They note, however, most
invariants are removed quickly (after O(1) samples), so performance improves
as more samples are collected.

1.6.4 Checking Daikon’s invariants in a refinement type system

Daikon has expressive invariants, but can they be statically verified? Yes, in
fact Daikon supports generating annotations for a Java-based theorem prover
called Simplify [2].

Simplify implements the following theories.

1. The theory of equality, =

2. The theory of arithmetic with functions +, *, -, and relation symbols >,
<, <=, and >=.

3. The theory of maps with two functions select and store (ie. get/set),
and two additional axoims.

4. Partial orders.

These could be encoded in Dependent Typed Racket, since it supports propo-
sitions in linear arithmetic constraints about variables, pairs, car, and cdr.

12

2 Question 2

Examine the use of Clojure’s core.spec contract system in several

real world code bases. Look at what features are used, and how precise
specifications are. Analyze how specifications address the lack of
higher-order contracts by looking at the frequency of higher-order function
contracts vs higher-order functions that omit specifications of higher-order
arguments or results.

2.1 clojure.spec

Recently, Clojure added a runtime verification system to its core library called
clojure.spec. It resembles common approaches to runtime verification, such
as Racket’s contract system, but is different in several important ways.

Firstly, clojure.spec is designed to treat most values as “data at rest”.
That is, at verification sites, values are eagerly traversed without waiting to see
if or how the program actually uses them. When we consider that clojure.spec
treats infinite streams and functions as data at rest, we begin to see the tradeoffs
that have been made.

Secondly, specifications (called “specs”) are not enforced by default. Users
must opt-in to enforcing specs via an explicit instrumentation phase. This is also
different than most contract systems, many of which are enforced by default.
There is no standard way to integrate spec enforcement into a test suite, so it is
difficult to tell whether specific specs are primarily unchecked documentation,
or actually used for runtime verification.

Since clojure.spec has a unique feature set amongst runtime verification
libraries, it is interesting to consider how programmers use clojure.spec in
practice. For example, do programmers find the semantics of treating functions
as data at rest useful?

Unfortunately since specs are opt-in, it is difficult to correlate someone writ-
ing a spec with that person using the spec, implying spec’s semantics as being
useful. Nevertheless, in the following sections we attempt to draw conclusions
about spec’s common usage based mostly on the frequency of spec annotations.

2.2 Function specifications in clojure.spec

From here, we map the namespace prefix s to clojure.spec.alpha, and stest
to clojure.spec.test.alpha.

(require ’[clojure.spec.alpha :as s])
(require ’[clojure.spec.test.alpha :as stest])

There are two kinds of function checking semantics in clojure.spec. We
use intmap, a higher-order function that maps a function over a collection of
ints, to demonstrate both semantics.

13

(defn intmap
"Maps a collection of ints over a function."
[f c]
(map f c))

If the programmer wants to write a higher-order function spec to verify
intmap, they might write the following spec.

(s/fdef intmap
rargs (s/cat :f (s/fspec :args (cat :x int?) :ret int?)
:c (s/coll-of int?))
:ret (s/coll-of int?))

The s/fdef form signals we are annotating a top-level function, in this case
intmap. Argument specs are provided with the :args keyword option in the
form of the “tagged” heterogeneous collection spec s/cat—here 2 arguments
are allowed, tagged as :f for the function and :c as the collection.

The s/fspec spec is another kind of function spec, specifically for non-top-
level functions (such as function arguments to top-level functions). It has a
similar syntax to s/fdef, but a function name is not provided.

In a nutshell, s/fdef provides traditional proxy-based verification semantics
while s/fspec uses eager generative testing to exercise a function before letting
it pass the spec boundary, bare (without a proxy).

We will now demonstrate how the following call gets checked.

(intmap inc [1 2 3])
;=> (2 3 4)

First, the programmer instruments intmap with:
(stest/instrument ‘intmap)

This mutates the top-level binding associated with intmap, wrapping a func-
tion proxy around the original value.

Now, when checking (intmap inc [1 2 3]), the inc function is called sev-
eral hundred times with generated values conforming to int?, and checks each
call returns an int?. Then, [1 2 3] is eagerly checked against (s/coll-of
int?). The original intmap function is then called with the original arguments,
yielding a value (2 3 4). Instrumentation does not check return value specs,
so (s/coll-of int?) is ignored, and the original return value is passed to the
calling context.

2.3 Research questions
I aim to answer these research questions:

e What does the frequency and applications of fdef and fspec specs in
open source software reveal about the utility of clojure.spec’s function
semantics in practice?

14

I do not attempt to answer the following questions:

e How frequently do users instrument specs for runtime verification?

2.4 Methodology
2.4.1 Sources

To determine the frequency of fdef and fspec specs, the search features of
GitHub ? and CrossClj % were used.

GitHub indexes tens of thousands of open source Clojure projects, and pro-
vides a rudimentary search interface that is sufficient for discovering textual
occurrences of functions and macros. False positives are common however, such
as GitHub does not distinguish between “toy” projects and those with official
releases, so we remove the former manually. This is because toy projects do not
give a good indication of real-world idioms—for example, hundreds of projects
simply contain experiments with clojure.spec that are not officially released
or maintained.

CrossClj maintains a rich database of cross-links between Clojure projects.
As of Febuary 2018, it indexes 9,438 projects, all of which have official re-
leases (unlike GitHub search) and thus have more credibility that they are used.
Cross-links are gathered for function/macro usages, and transitive project de-
pendencies. Unlike GitHub, CrossClj also distinguishes between ClojureScript
and Clojure code

2.4.2 Frequency Data gathering

Simple GitHub searches were used to find occurrences of fdef and fspec. As
of March 2018, searches for fdef yield around 2,000 results 4, and for fspec ®
yield around 600 results. Searches were quite noisy, so less actual examples of
these forms were found.

As a baseline, we searched for several common spec forms. The spec def
form for defining spec aliases found around 4,400 results. The spec keys form
for heterogeneous maps found around 3,500 results. All of these numbers are
compared in Figure 2.

CrossClj function/macro cross-links were used to find occurrences of spec
idioms. From the latest index (updated February 20th 2018) fdef occurs in 721
top-level forms over 83 projects ¢, and fspec occurs in 22 top-level forms over
8 projects 7 (the mode number of occurrences per project was 1).

An error was found in the CrossClj data, however. To find a baseline number
of projects using clojure.spec, we looked for occurrences of s/def, used to

2https://github.com

Shttps://crossclj.info

dnttps://github. com/search?q=fdef+language%3Aclojure&type=Code
Shttps://github.com/search?q=fspec+language3Aclojure&type=Code
Shttps://crossclj.info/fun/clojure.spec.alpha/fdef .html
"https://crossclj.info/fun/clojure.spec.alpha/fspec.html

15

4,000 |- .
2 2100 .
B ‘%
9] =
~ 2
= 2,000 | 1z | |
% ~§ 50
o I A
1= __B oL __8
s/def s/keys s/fdef s/fspec s/def s/keys s/fdef s/fspec
GitHub CrossClj

Figure 2: Left, the number of results for GitHub searches about spec forms.
Right, the number of projects on CrossClj that use spec features. Searches for
ifn? are omitted because it has been used as a common predicate since before
2009 (spec was released in 2017).

define spec aliases. It should greatly outnumber the number of fdef’s in the
ecosystem—we were surprised to find CrossClj reports the opposite, and we are
almost certain these particular CrossClj metrics are incorrect. We identified
that multiple occurrences of s/def in the same project are not always counted
by CrossClj, so while CrossClj claims s/def occurs in more 60% more projects
than fdef (125), CrossClj reports s/def only occurs in 349 top-level forms &.
The latter number is too low—CrossClj reports, for example, the clj-time
library only has 2 occurrences of s/def, but it actually has 7 occurrences.

We did not notice such an error in the counts for fspec and fdef, but
this error reduces confidence on the exact numbers. Interestingly, the relative
numbers of projects using these forms matches our intuition—fspec occurs 10
times less often than fdef, and fdef occurs about half as often as s/def (see
plot in Figure 2). Still, these numbers should be treated with suspicion.

2.4.3 Project Samples

We selected 18 open source projects that use fspec to manually examine. They
were chosen by first searching GitHub for fspec occurrences, and manually
choosing the first few dozen results, manually keeping only projects seemed to
have official releases. Figure 3 summarizes these findings. We have included the
project names and our scratch notes as Appendix A.

We also searched for negative examples of fspec usage—that is, occurrences
of higher-order functions with specs that did not use fspec—by searching for
both fdef and ifn? ?, the flat contract for Clojure functions. We selected 17
projects using a similar method via a GitHub search. Appendix B contains the
projects and our scratch notes for this experiment.

8https://crossclj.info/fun/clojure.spec.alpha/def .html
9mttps://github.com/search?utf8=YE2%9C%93&q=ifn%3F+fdef+language’3Aclojure&type=Code

16

fspec ifn?

Total occurrences in fdef 79 3
e Total occurrences in fdef arguments 65 (82%) 3
e Total occurrences in fdef return 14 (18%) 0
Total occurrences in map spec 41 2
e Total occurrences in heterogeneous map spec 40 (97%) 2
e Total occurrences in homogeneous map spec 1 (3%) 0

Figure 3: Function specs in practice, in 18 open source projects sourced from
GitHub that utilized fspec.

2.5 Experiment 1: Frequency of fspec

Our first investigation concentrated on projects that use fspec. We chose 18
open source projects and manually investigated their usage of spec.

To gauge how fspecs are used in practice, we divided their occurrences into
several categories. Figure 3 presents the results.

First, we measure how many times fspec occurs in top-level function specs
(i.e., fdef forms). Because spec has different semantics for checking the argu-
ment and return of top-level function specs, we split this category into occur-
rences in the arguments spec and return spec. We also similarly measure the
occurrences of ifn? in these projects, which was sparsely used in these projects.

We found 82% fspec instances occuring in the argument position, with 18%
in the return position.

Second, we measure the frequency of fspec in a hash-map spec. Of the
occurrences of fspec in map specifications, we found a strong preference for
using heterogeneous map specs (97%), with the rest being homogeneous maps.
If £spec occurs in a nested map, each map spec occurrence is counted. Similar
to the previous experiment, the flat function contract ifn? was rarely used in
map specs in these projects.

We noticed several interesting things while conducting these experiments.

There was only 2 occurrence of nesting function specs more than 2 deep—in
a library that provides functional lenses '°. Of those, one used 3 fspecs, the
other 2 fspecs with a terminating ifn?.

We also noticed several users combining fspecs with the or spec for disjunc-
tions. It’s unclear how well this works in practice (and might only be there for
documentation), but the “looser” generative testing semantics of fspec seems
to have more compatibility with disjunction contracts than the “stricter” proxy-
based verification approach.

Spec also provides the ability to write dependent function contracts via the
:fn keyword option of fspec, allowing programmers to add custom code to
verify the relationship between function arguments and return values. We
found several interesting dependent contracts that used surprising techniques

10https://github.com/andrewmcveigh /bifocal

17

fspec ifn?

188

Total occurrences in fdef 0

e Total occurrences in fdef arguments 0 170 (90%)
e Total occurrences in fdef return 0 18 (10%)
Total occurrences in map spec 0 173

e Total occurrences in heterogeneous map spec 0 67 (39%)
e Total occurrences in homogeneous map spec 0 106 (61%)

Figure 4: Flat function specs in practice, in 17 open source projects sourced from
GitHub that utilized ifn?. The 106 homogeneous map spec occurrences were
sourced from only 3 of the projects, one project contributing the maximum 93
occurrences. Heterogeneous map specs occurrences were from 7 of the projects,
with maximum 30 occurrences in one project.

like memoization to verify calls to higher-order functions '!.

Some developers explicitly worked around the fspec’s generative testing se-
mantics. We found several comments and workarounds explaining why fspecs
were not appropriate in particular contexts. Common concerns were

e triggering function side effects,
e difficultly writing generators for testing the function, and
e being unsure whether generative testing was appropriate.

We speculate the lack of polymorphic function specs contributed to these
concerns. Since instances of a type variable were replaced with any? specs,
writing a generator often did not make sense. It’s unclear whether polymorphic
specs are even feasible to check, but some developers at least seem attached to
the documentation capabilities of fspec, perhaps suggesting more control over
the testing semantics of £spec would be welcomed by spec users.

2.6 Experiment 2: Frequency of ifn?

In our second experiment, we measured the frequency of ifn? in 17 open source
projects. The results are summarised in Figure 4.

Similar to our first experiment, occurrences of ifn? were mostly in the
argument positions in fdef (90%). The data for ifn? occurrences in map specs
is somewhat skewed, since one project contributed over half of the occurrences.
However, even without taking that project into account, around half of all the
ifn? occurrences were found in map specs.

One striking divide we noticed was the obvious preference for either ifn?
or fspec per project. None of the projects that primarily used ifn? used
fspec even once. In the first experiment, projects that used fspec used ifn?
rarely—mostly to avoid fspec’s generative testing semantics.

U https://github.com/CharlesHD /chu.graph

18

2.7 Conclusions

Our goal in this section was to inform our decisions for when to generate fspec
annotations in our automatic spec annotation tool. We surveyed open source
projects via GitHub by measuring instances of two kinds of projects: those that
primarily used fspec, and those that primarily used ifn?.

Our experiments yielded many interesting insights. Even using broad mea-
surements like GitHub searches and CrossClj project references, we consistently
found other common spec features were used roughly an order of magitude more
than fspec (Figure 2).

However, we still investigated how programmers use fspec (Section 2.5).
In the projects that primarily used fspec for first-class function specs, we
found several instances of programmers enjoying the expressive documentation
of fspec, but avoiding its generative testing semantics in creative ways. Some-
times fspecs commented out and replaced with ifn?, implying spec might
benefit from more control over fspec’s testing semantics.

Our second experiment (Section 2.6) measured how programmers combined
spec with ifn?. Interestingly, none of the 17 projects we selected used fspec—
programmers seem divided in strong preferences for ifn? and fspec, with fspec
users using ifn? only occasionally to work around fspec’s testing semantics.

A unique feature of spec’s runtime instrumentation of fdefs is that return
values are not checked. Since we predicted programmers might have issues with
fspec’s generative testing semantics, we were interested if fspec’s were more
frequent than usual in the return position of fdef (where these semantics would
be implicitly suppressed). In our investigation, we found no particular evidence
that programmers preferred fspec over ifn? in the return position—when
they occurred in fdef forms, fspec was in the return position 18% of the time
(Figure 3), and ifn? was 10% of the time (Figure 4).

One difference we found was ifn? occurs with a high correlation in a map
spec (92% of the time), while fspec occurred in a map spec only 51% of the time.
However, fspec occurred much more often in heterogeneous map specs (97%
of occurrences in map specs were heterogeneous), while ifn? only occurred in
heterogeneous maps 39% of the time. Heterogeneous maps in Clojure are used
like records or structs in other languages [1], so the appeal of combining fspec
with heterogeneous maps is similar to giving precise annotations to record or
struct fields.

The lack of polymorphism in spec coupled with the frequency of polymor-
phic functions in Clojure seems to be a strong reason to prefer ifn? in many
situations. We found ifn? was often used to avoid “any to any” function
specs, which would otherwise use the generator for any? to generatively test
the function value. This is inappropriate for many common variants on poly-
morphic functions like map, filter, and reduce and we found several examples
in our experiments that support this view (see occurrences of “polymorphic” in
Appendix B).

To tie back our investigation—what does this tell us about programmer
preferences in an automatic spec annotation tool? At the very least, it tells us

19

there is no simple “fits all” behavior—we found preferences were in (at least)
two distinct camps. This implies that the tool should have some customizability
between preferring fspec and ifn?, but which should be the default?

Should the tool prefer more expressive, but possibly incorrect specs, over
less expressive but specs that “just work”? I don’t think there is a single defini-
tive answer—rather each occurrence of fspec comes with its own context and
tradeoffs. Whether it occurs in the arguments or return of an fdef, in a het-
erogeneous or homogeneous map, or even nested in another fspec are relevant
contextual information that the default behavior of the tool should take into ac-
count. The varied and subtle results of this investigation support the conclusion
that the tool’s behavior should probably itself be varied and subtle.

20

3 Question 3

Write a formal model of Clojure with core.spec, and implement it in
PLT Redex. Formulate a consistency property between contracted and
uncontracted execution, and test it in redex.

3.1 Formal model

We devise a base formal model for Clojure called Ac (syntax defined in Figure 5).
We extend Ac with clojure.spec with fdef but without fspec specs, and call this
model Ac, (syntax defined in Figure 6). Then, we extend Ac¢s to support £spec
function contracts, and call this final model A¢{ (syntax defined in Figure 7).

We define the small-step reduction rules (—) for each language, using con-
texts. Figure 8 defines the reduction rules for the base language Ac—it does not
include any spec features. Figure 9 defines the reduction rules for Acs, adding
support for fdef. Finally, Figure 10 defines the reduction rules for Ac/, adding
support for fspec.

3.2 Consistency property

Let —* be the reflexive, transitive closure of —, the single-step reduction rela-
tion for our respective languages.

We formulate two consistency properties, one which we expect to hold, an-
other which does not hold, and test them both using Redex.

The first theorem (Theorem 1) states that any expression in Ac evaluates
to the same value (or error) as checking that value against any spec in Acs,
or throws a spec value. For example, 1 in Ac evaluates to the same value (or
error) as (assert-spec 1 number?). Furthermore, (assert-spec 1 zero?)
evaluates to a spec error, and so is also consistent with 1 in Ac.

Theorem 1 (Consistency without fspec). For every expression E in Ac, and
every spec S in Xcg, if E—* V§ and (assert-spec E S) —* V5, then either:

o« V=15 or
o 5 is (error spec-error ...).

We formulated Theorem 1 in Redex, and tested it for 1000 expressions, each
with 1000 specs. We found no counter-examples, as expected.

We expect to find a counter-example in Theorem 2, however. It is similar
to Theorem 1, except we compare Ac¢ with Ac¢f, which includes fspecs (with
generative testing semantics).

Theorem 2 (Consistency with fspec). For every expression E in Ac, and every
spec S in Aef, if E—* V5 and (assert-spec E S) —* V5, then either:

« =15 or

e U5 is (error spec-error ...).

21

Formulating Theorem 2 in Redex finds many counter-examples involving
fspec. For example, the following call that generates only 10 expressions each
with 10 random specs finds a “stuck” term from trying to generatively test a
one-argument function boolean? as if it had zero-arguments (there is no way
to know a function’s arity in advance).

> (check-Clojure-ClojureSpecHOF-compat 10 10)

ERROR:

ClojureSpec evaluation did not fully reduce
Original-form: (assert-spec boolean? (FSpec () zero? 0))
Stuck-form: (assert-spec boolean? (FSpec () zero? 0))

3.3 Notes on Redex model

Caching was disabled for the Redex model because it interfered with genera-
tive testing. For example, the result of (gen-spec number?) was cached, so
generative testing coverage was very poor.

The model rendered in this paper can be found at:

e https://github.com/frenchy64/quals/blob/master/redex/clj2.rkt.

For experimentation, the same model, but based on the Eval-Apply-Continue
machine can be found at:

e https://github.com/frenchy64/quals/blob/master/redex/clj.rkt.

22

E:=C|L|X

if EEE)
C=:=N|O|B|nil|HJ|ERR
X ::= variable-not-otherwise-mentioned

ERR ::= (error any any ...)
Li=(m[X.]E)|(nX[X..]E)
NONFNV =B |H | nil | N
V=0 |L| NONFNV
Ve .=V | ERR
H ::= (HashMap (V V) ...)
= true | false

Z w

::= number

::= natural

P

inc | dec

+ | * | dissoc

assoc | get

::= zero? | number? | boolean? | nil?
x=[|(HCEE)|(V..CE..)

av) [@RN]
i

(@}

Figure 5: Syntax of Terms in Ac. Expressions E consist of (loosely named)
“constant” expressions C (numbers N, built-in functions 0, booleans, nil, hash
maps H, and errors ERR), functions L (non-recursive, and recursive), variables X,
applications, and conditionals. The built-ins assoc, dissoc, and get perform
the hash map operations add, remove, and lookup, respectively. Values are
denoted V, and we use contexts C to define reduction rules.

FS ::= (DefFSpec (S ...) S)
u=P
(assert-spec C 5)

mHaQO w
I

.... | (gen-spec S)
.... | (assert-spec E S)

Figure 6: Syntax of Acs (extending Ac, Figure 5). We add the assert-spec
form that takes an expression and a spec and checks the expression evaluates
to a value conforming to the spec. We restrict specs to just predicates P.

S:u= ... | (FSpec (S..)S) | (FSpec (S..) SZ)

Figure 7: Syntax of Ac! (extending Ac,, Figure 6). We add two forms of
fspecs—the natural number represents how many times to generatively test
a function value.

23

Cl((fn (X ...) E) V ...)] — C[subst[E, ([X = V] ...)]] (B]
where unique[(X ...)], (same-length? (X ..) (V ..))

Cl((fn Xiee [X ...] E) V ...)] —> C[subst*[E, ([Xree > (fn Xiee [X ...] E)] [rec-B]
X V]l
where unique[(X. X ...)], (same-length? (X ..) (V ..))
C[(if V Ei Eg)] — C[Ey] [if-t]
where (truthy? V)
C[(if V Ei Eg)] — C[Ey] [if-f]
where (not (truthy? V))
C[(O V ...)] — C[V] [5]
where 3[(O V ...), V¢
C[ERR] — ERR [error]
where (not (top-level-hole? C))
C[X] — (error unknown-variable X) [x-error]
(NONFNV V ...) — (error bad-application) [B-non-function]
Cl((fn [X ..] E) V ...)] —> (error argument-mismatch [B-mismatch]

(arg-mismatch-msg (X ..) (V..) ([X..]E))
where unique[(X ...)], (not (same-length? (X ..) (V..)))

Cl(fV ...)] —> (error argument-mismatch [rec-B-mismatch]
(arg-mismatch-msg (X ..) (V..) (I[X..]E))

where (not (same-length? (X ..) (V..)),f=(fmX;[X..]E)

Figure 8: Small-step reduction relation in Ac. We define £ reduction rules for
both types of functions. Then branching rules for conditionals (false and nil
are false values), and constant functions (4, full definition omitted). Finally
several rules for throwing detailed runtime errors.

24

gen-spec*: S — V¢
gen-spec*[number?] =
gen-spec*[zero?]
gen-spec*[boolean?] =
gen-spec*[nil?]

0

nil

(random-int)

(random-ref (true false))

C[(gen-spec S)] —> C[gen-spec*[I]]

Cl(assert-spec (fn [X ...] E)

(DefFSpec (S ...) Si))]

C[(assert-spec (fn X, [X ...] E)

(DefFSpec (Sa ...) Si))]

Cl(assert-spec V P)] — C|[(if (P V)
\Y

— C[(ln X ..]
(assert-spec
((fn [X ...] E)
(assert-spec X Sa) ...)

N

— C[(ln X, [X ..]
(assert-spec
((fn [X ..] E)
(assert-spec X Sa) ...)
S))]

(error spec-error
(spec-violation-msg P V)))]

Figure 9:

Small-step reduction relation in Acs; (extending Ac¢, Figure 8).

gen-spec takes a spec and generates a value conforming to that spec via the
gen-spec* metafunction. We define assert-spec with support for for fdef
using traditional proxy checking semantics, and flat predicates.

25

[gen-spec]

[assert-deffspec]

[assert-rec-deffspec]

[assert-spec-P?]

gen-spec*-hof : S — Ve
gen-spec*-hof[(FSpec (S, ...) S:)] = (fn (dummy-params (S, ...)) gen-spec*-hof[S.])

C|[(gen-spec S)] — C[gen-spec*-hof[S]] [gen-spec]
Cl(assert-spec V (FSpec (Sa ...) S))] —> C|[(assert-spec V (FSpec (S. ...) S: ngenerations))] [assert-fspec-init]
Cl(assert-spec f (FSpec (Sa ...) S: 0))] — C[f] [assert-fspec-stop]
where f = (fn [X ...] E)
C|(assert-spec f (FSpec (Sa ...) S: Z))] —> C[(do (assert-spec (f (gen-spec S.) ...) Si) [assert-fspec-gen]
(assert-spec f (FSpec (S ...) S¢ (subl 7))))]
where (< 0 Z),f= (fn [X ...] E)
C|(assert-spec f (FSpec (Sa ...) S: Z))] —> C[(do (assert-spec (f (gen-spec S.) ...) i) [assert-rec-fspec-gen]
(assert-spec f (FSpec (S, ...) S¢ (subl 7))))]
where (< 0 Z), f = (fn nme [X ...] E)

C|(assert-spec NONFNV — (error spec-error [assert-fspec-nonf]
(FSpec (S ...) S: Z))] (nonf-spec-error-msg NONFNV))

Figure 10: Small-step reduction relation for Ac¢f (extending Ac,, Figure 9)
gen-spec takes a spec and generates a value conforming to that spec via the
gen-spec*-hof metafunction (which extends gen-spec* in Figure 9). Since we
add fspecs, gen-spec*-hof can generate values conforming to fspecs (dummy
functions that have the expected number of parameters, and generate their re-
turn values). assert-fspec-init initializes FSpec with an initial number of
generations. assert-fspec-gen and assert-fspec-stop handle the actual
generative testing, with assert-rec-fspec-stop supporting recursive func-
tions. Finally, assert-fspec—nonf handles non-function values that are ex-
pected to conform to an fspec.

26

References

1]

A. Bonnaire-Sergeant, R. Davies, and S. Tobin-Hochstadt. Practical optional
types for clojure. In European Symposium on Programming Languages and
Systems, pages 68-94. Springer, 2016.

D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorem prover for
program checking. Technical report, J. ACM, 2003.

M. D. Ernst, J. H. Perkins, P. J. Guo, S. McCamant, C. Pacheco, M. S.
Tschantz, and C. Xiao. The daikon system for dynamic detection of likely
invariants, 2006.

S. Hangal and M. S. Lam. Tracking down software bugs using automatic
anomaly detection. In Software Engineering, 2002. ICSE 2002. Proceedings
of the 24rd International Conference on, pages 291-301. IEEE, 2002.

J. hoon (David) An, A. Chaudhuri, J. S. Foster, and M. Hicks. Dynamic
inference of static types for ruby, 2010.

J. H. Perkins and M. D. Ernst. Efficient incremental algorithms for dynamic
detection of likely invariants. In In Proceedings of the ACM SIGSOFT 12th
Symposium on the Foundations of Software Engineering (FSE 200/, pages
23-32, 2004.

M. Pradel, P. Schuh, and K. Sen. Typedevil: Dynamic type inconsistency
analysis for javascript. In 2015 IEEE/ACM 37th IEEFE International Con-
ference on Software Engineering, volume 1, pages 314-324. IEEE, 2015.

B. Pytlik, M. Renieris, S. Krishnamurthi, and S. P. Reiss. Automated fault
localization using potential invariants. arXiv preprint c¢s/0310040, 2003.

C. Saftoiu. Jstrace: Run-time type discovery for javascript. Technical report,
Technical Report CS-10-05, Brown University, 2010.

27

A Q2: Experiment 1

This section we put our notes on the first experiment.

valuehash:

- 1 fn returning fn

- 1 fn taking fn

- Note: fn takes input-stream, how to generate? are fspec generators used in ‘lein test‘?
https://github.com/arachne-framework/valuehash/blob/fdd19b4adc3b294d46fe7e0b50187290043b48aa/src/valuehash/specs.clj

arachne-fileset: trying to get best of both worlds (documentation but no generative testing)

- 1 fn taking pred

- Note: fn takes File
https://github.com/arachne-framework/arachne-fileset/blob/0336d2d8d273eb1€0a862641000dalbd76099626/test/user.clj#L35

dspec: utility function, checks direct HOF
- 1 fn taking pred (filter wrapper)
https://github.com/lab-79/dspec/blob/26£88e74066e381c8569d175c1bd5948a8005bd0/src/clj/1ab79/dspec/util.clj

async-connect: maps of fn handlers
- 19 fspecs, for a ‘keys‘ of functions
- Note: ‘with-generator‘ suppresses all fspec generators, but that doesn’t suppress
instrumentation fn generative testing. Unsure if generative testing used.
Takes a :netty/context, but that spec isn’t defined anywhere...
https://github.com/tyano/async-connect/blob/4£30801 0fc5352b8a169b6£5829d2553/src/async_connect/netty/handler.cl]

- 7 fspecs, maps of fn’s (channel ops)

- Note: ‘with-generator‘ suppresses generators
https://github.com/tyano/async-connect/blob/4£30801 0f c5352b8a169b6£5829d2653/src/async_connect/server. clj#L46

devcards: direct HOF, also mixes ifn? checks
- 3 ifn?’s
- 2 in map input
- 1 fn taking fn
- 1 fspec
- 1 fn returning fn
- 1 fn taking map with a fn entry
- Note: alpha quality
https://github.com/olivergeorge/devcards-vs-clojure-spec/blob/385e332c21e57b097b56e899c09e99a260dat 3ad/src/deveards_vs_clojure_spec/core_specs.cljc#L7

email-tool: map of fn’s
- 2 fspecs

- map args to fn

- 1 fspec is any -> any

- 1 fspec has easy to generate things (strings etc.)
https://github.com/andrewzhurov/email-tool/blob/fd6bf979c5534315edf0d5e2ca762a879d0c9587/src/email_tool/parts.clj#L8

bifocal: lenses, everything is HOF, sorely missing polymorphism
- 6 fspecs

- 4 are basically any -> any

- fn taking fn taking fn (3 nestings)

- (s/def ::upd-f (s/fspec :args (s/cat :s any? :f fn?) :ret any?))

- 1 fn?

- as above, mixing with fspec
https://github.com/andrewmcveigh/bifocal/blob/850e79452f4f9bc6966768055act c7aae6671f80/src/bifocal/lens.clj#L36

triboard: fn taking fn
- 1 fspec

- posn -> any
https://github. con/QuentinDuval/triboard/blob/dc9d60197262857bbea0756a5a395ba248929961/src/cljs/triboard/view/frane. c1js#L15

yoose: fn taking handler fn
- 1 fspec

- 1 fn taking fn (any -> any, event handler)
https://github.com/brianium/yoose/blob/6400ed9e20£8472411c6cb0185a392cda097a0b8/src/brianium/yoose/spec.clj#L9

cljs-fn: map of fn’s
- 2 fspecs (react)

- map of fn’s

- render db/id fn

- thunk for end of row formatting
https://github.com/briansunter/cljs-hn/blob/a15bac4535fd88d6£79a80864a0301fe3d7d8d60/src/hackernews/components/list.cljs#L15

kxix.collect: fn taking handler/processing fn’s
- 2 fspecs
- 2 fn taking fn’s (handlers)
- Note: alpha, no release but not a toy
https://github.com/MastodonC/kixi.collect/blob/8a5e6a0de041£5684602235be6466ataB805be92d/sTc/kixi/collect /aggregate. c1j#L15

28

frereth-common: or + fn’s !!!
- 5 fspecs

- 3 fn taking fn

- 2 fn returning fn

- odd combination of or + fspec’s

- most (any -> any) but comments are unsure if it can be more specific

- perhaps polymorphism might help?
- Note: unreleased, discouraged from use, but not a toy
https://github.com/jimrthy/frereth-common/blob/f£59081b170984d25e8e8192d34348ce36£7296c/src/com/frereth/common/methods. cljc#L33-L36
- 5 fspecs

- 3 fn taking fn (bytes -> any)

- 2 fn returning fn
https://github. con/jimrthy/frereth-common/blob/88e57bb94233412429be1b9405bbf 04c9c2af08/src/ com/frereth/comnon/aleph. c1j#L98

datomic-spec: homogeneous map with fn vals
- 1 fspec (in testing code)

- 1 fn returning homogeneous map of fn vals (thunks that return test.check generators)
https://github.com/lab-79/datomic-spec/blob/880ab123b49da8cc79c27cd78c9a2455b260e4b9/src/cljc/1ab79/datomic_spec/gen_overrides.cljc#L6

mqtt: many fspecs, contain very specific args
- 10 fspecs

- 1 fn returning fn (comnection init fn)

- 1 fn taking fn (handler)

- 4 fn map of fn

- 1 fspec fn intersection (I (nil Val -> Any) (Val nil -> Any))

https://github.com/dvlopt/mqtt/blob/c7f2dcaf8d4df0a31460c16£24c5b402£21d£655/src/dvlopt /mqtt/v3.clj

chu.graph: fn returning fn
- 11 fspecs
- 14 function taking fn
- 2 functions returns fn
- extremely complicated dependent function specs
- https://github.com/CharlesHD/chu.graph/blob/a820ef8456b44b1044d7£6cd9340a5504ad393de/src/chu/graph. c1jc#L78-184
- Note: are these even used?
https://github.com/CharlesHD/chu.graph/blob/a820ef8456b44b1044d7£6cd9340a5504ad393de/src/chu/graph. c1jc#L17

takelist: fn returning fn
- 1 fspec

- 1 fn returning fn
https://github.con/alexanderkiel/takelist/blob/434ef6£6e05cad06c446b81Faba77c710519c355/src/takelist/app. c1j#L27

java.jdbc: seems dubious these are ever used, unless fn’s are stubbed.
- 6 fspec
- 1 fn taking fn
- 7 fn taking map of fn
- 1 fn returning fn
- 1 fspec commented out
- improved custom generator needed (database ResultSet’s)
https://github.com/clojure/java.jdbc/blob/64a79366fa464be75bdf4bdda133441b9d1efb26/src/main/clojure/clojure/java/jdbc/spec.clj#L124

sparkle: disjunction between map and fn

- 1 fspec (fdef return)
https://github.com/GradySimon/sparkle/blob/d5d82c37ab6be8359be7d3b5524d8b32dac452al/src/sparkle/layer.clj#L9

- commented out dependent :fn clause
https://github.com/GradySimon/sparkle/blob/d5d82c37ab6be8359be7d3b5524d8b32dac452al/src/sparkle/spec.clj#L18-124

B Q2: Experiment 2

This section we put our notes on the second experiment.

arachne-fileset : explicitly avoids fspec, comments out more expressive specs to avoid generative behaviour

- 5 fn taking ifn?

- 2 homogeneous map of ifn?

- Comment: ;; Need to override specs here so it doesn’t try to gen when I instrument
https://github.com/arachne-framework/arachne-fileset/blob/0336d2d8d273eb1e0a862641000dalbd76099626/src/arachne/fileset/specs.clj#L7

z-com : uses ifn? (probably polymorphic 1 arg function), probably doesn’t make semse to gen
- 4 fn taking ifn?
- 4 heterogeneous map of ifn?

https://github.com/aw7/z-com/blob/3180acf693f620bde5c7fb9d7c300e5deb02f88a/src/z_com/standard.cljs#L18

meiro : uses ifn? (unclear how to fspec, might be possible with very specific generators)

29

https://github.com/defndaines/meiro/blob/19f93996b87663fec5ed70c4966d114aa4855d6b/src/meiro/backtracker.clj#L17
- 2 fn taking ifn?

- 1 fn returning ifn?
https://github.com/defndaines/meiro/blob/f4fe98f8a54ffd0cc78a671de96bcd9727904c0c/src/meiro/core. c1j#L201

comfy : utility library, uses ifn? for HOF’s (19 occurrences in about a dozen very polymorphic function specs)
- 16 fn taking ifn?

- 3 fn returning ifn?

- possible transducer returns, like in (map f)
https://github.con/madstap/comfy/blob/bbca80f269a912a3a4914188d8dac29e5edacalb/src/madstap/confy . cljc

ferje : polymorphic "app(ly)" function uses ifn?
- 1 fn taking ifn?
- polymorphic
https://github.con/chourave/ferje/blob/d8a3261309a994bdbat6e3af29f c6d22c3e51844/src/ferje/util. c1#L33

huri : 12 occurrences of ifn? (here combines ‘s/or‘ and ifn?, so fspec probably not appropriate)

- 109 fn taking ifn?

- 30 heterogeneous map ifn?

- 93 homogeneous map ifn?
https://github.com/sbelak/huri/blob/fc98c5f1870f524c1e2662980085b6a258abd5ct/src/huri/core.clj#L159-L161

arche : ifn? takes a "User Defined Type" (keyword), perhaps hard to generate?

- 6 fn taking ifn?

- 6 heterogeneous map ifn?
https://github.con/troy-west/arche/blob/1c739d178cbcbelelf0ac67 eb64da2t8e82e099/sTc/troy _west/arche/spec. c1j#L36

conllu-clj : ifn? for ‘keyfn‘, but can only be one of 2 predefined def’s

- 1 fn taking ifn?
https://github.com/ysmiraak/conllu-clj/blob/6bc02c8f3a28dceas71c20£b965878b21fb0c5e5/src/conllu/eval . c1#L19
- 2 fn taking ifn?

- arbitrary transformation functions
https://github.com/ysmiraak/conllu-clj/blob/564e64a94cfde69£58dc37dal83e735ebd5a07bb/src/conllu/parse.clj#L42

planck : TCP data handlers are ifn?
- 2 fn taking ifn?
https://github.com/mfikes/planck/blob/3bc8b174834cf413dbc7416£7af30955adcc27b0/planck-cljs/src/planck/socket/alpha.cljs#L11-L12

owlet : callback is ifn?

- 1 fn taking ifn?

- callback
https://github.com/codefordenver/owlet/blob/4864e0cbc7726501cc58a1362347f07£10524ed7/src/cljs/owlet/views/confirm. cljs#L12

sqlingvo : evaluation fn is ifn? + another (latter could be enum of fns tbh)

- 2 fn returning ifn?

- 2 heterogeneous map ifn?

- ifn’s are interfaces to db
https://github.con/r0man/sqlingvo/blob/183014264e998366cdb06dbfe35a984c7d5443¢/sTc/sqlingvo/db. cljc

proletariat : 2 HOF helpers with IFn (reduce, conj wrappers)

- 2 fn taking ifn?

- could be polymorphic
https://github.com/LiaisonTechnologies/proletariat/blob/2a9a8cbh8185785cb1d12376da21ddb97d5e43d51/src/proletariat/core. clj#L566

mazes : ifn? for predicate arg (but rest of fn is also sparsely annotated with sequential?)
- 1 fn taking ifn?
https://github.com/amacdougall/mazes/blob/1766a5fb2a3bbfc3141f44c09a2477alec65edef/src/cljc/mazes/generators/wilson. c1jc#L36

Arcadia : listener is ifn?
- 1 fn taking ifn?
https://github.com/arcadia-unity/Arcadia/blob/a0f1ee9f3d8a5b248bb415001d2d0cb2d27527db/Source/arcadia/internal/state.clj#L52

hive : callback is ifn?

- 1 fn taking ifn?

- 1 heterogeneous map ifn?
https://github.con/hiposfer/hive/blob/f4323cc6ddba894942ba37329d4a5f7£7£974024/sTc/hive/services/raw/location. c1js#L12

datacore : map of callbacks is ifn? vals, + 4 function inputs as ifn?

- 14 fn taking ifn?

- 11 fn returning ifn?

- 22 heterogeneous map ifn?

- 11 homogeneous map ifn?
https://github.com/stathissideris/datacore/blob/e4ab7£4822edfccca821fb8f4f9ec81a69e9d056/src/datacore/cells. clj#L59

ambiparse : predicate is ifn?

- 1 fn returning ifn?

- 2 heterogeneous map ifn?
https://github.con/brandonbloom/ambiparse/blob/eeb047878e4990a877810ac4805a45d8cfe9actb/src/ambiparse/gll. c1j#L175

30

