
Ambrose Bonnaire-Sergeant 
Sam Tobin-Hochstadt

Inferring Useful Types and Contracts 
via Dynamic Analysis

Typed Clojure

Squash the work!



The Work…

• You’re porting an untyped file to an optional type system 

• So you …



Stare…



… then Annotate



and Stare … (hmm Knuth? …)



global annotation…



…local annotations…



…stare (… ahhh…Knuth.)



annotate … m5 … m6 .. m.. zzzz



Help needed!! 
Can we automate?



What if your diffs looked like this?



…and this?



… or no diff at all… :)



Squash the work!



Background

• Optional/gradual types and contracts are popular verification 
tools for dynamically typed languages 

• Usually heavily rely on annotations



Problem

• Must keep annotations in sync with code 

• Initial annotation cost, versioning, libraries, iterative changes 

• Almost always a manual effort 

• Annotating costs time + error prone



Motivation
• Reduce time+effort spent annotating 

• Can we automate keeping annotations in sync with code? 

• Benefits 

• Get more programmers quickly and easily started with verification 

• Help existing users evolve annotations along with code 

• Ultimately encourage more code to be verified



Non-goals

• 100% correct annotations 

• “Useful” annotations are good enough



Our setting



Our setting

• Typed Clojure 

• optional type system for Clojure 

• Clojure.spec 

• contract system for Clojure

Typed Clojure

Clojure



Typed Clojure



Clojure.spec



Dynamic Analysis



• Observe and collect information on running programs 

• Via unit/generative tests, dummy runs

Dynamic Analysis



Inference results via side effects



Runtime Instrumentation

(track e path) 
;=> v

Wrap e as v, where path is the 
original source of e.



Top-level typed bindings



Summarizing execution



Track functions (part 1)



Track functions (part 2)



Inference results via side effects



Connecting the dots

Γ = {forty-two : Long}



Connecting the dots

Γ = {forty-two : Long}

How?



Converting Dynamic 
Inference results to useful 

annotations



From inference results, to 
type environments



Inference results



Type environments



From inference results, to 
type environments



Our approach



Our approach



1) Generate naive type environment from dynamic 
inference results

Step 1: 

point : [Long Long -> ‘{:x Long :y Long}]



2) Create local recursive types (“vertically”)

Step 2: 

f : g : h : b :



2) Create local recursive types (“vertically”)

Step 2: 

f : g : h : b :



Step 3: 

3) Merge possibly-recursive types globally (“horizontally”)

f : g : h : b :



Step 3: 

3) Merge possibly-recursive types globally (“horizontally”)

f : g : h, b :



Experiments



Experiment 1: Annotation quality

• Compactness 

• Accuracy 

• Organization



Naming

• Reusing names from program sources is effective



Crude naming is still informative



Effectively annotate recursive data



Effectively annotate recursive data



Experiment 2: Runnable contracts

• Do the contracts pass the unit tests? 

• Yes. 

• A nice consistency/sanity check for the approach



Experiment 3: Manual delta

• Generate types 

• What kind of manual changes needed to type check?



Case study: Type checking 
raynes/fs

• 76 generated top-level annotations

• 59 annotations out of the box!

• 17 needed changes (22%)



Case study: Type checking 
raynes/fs

• 50 casts manually added

• Where to draw the typed/untyped boundary?



Over-specificity

• Can be overly specific for generic functions 

• No support for polymorphism



Local annotations are useful

• We generate local annotations, sometimes very useful and saves a lot 
of work



• 147 generated local annotations (counting 1 per fn arg/rng position) 

• 1 manually changed annotation, 8 local annotations skipped checking 

• 139+ useful annotations out of the box (93%)

Case study: Type checking 
math.combinatorics



ambrosebs.com

http://ambrosebs.com


Future work

• Incorporate+modify existing annotations 

• More granular options for runtime tracking 

• Currently per-namespace only



Squash the work!



Thanks!

Ambrose Bonnaire-Sergeant

ambrosebs.com


