Typed Clo]ure

~for Clojure

From Optional to Gradual Typing

Ambrose Bonnaire-Sergeant

Friday, 25 September 15

! Typed Clo]ure

+for Clojure

@

We are here > @ Typed Clojure

Coming soon

Clojure

What is Optional Typing?

Friday, 25 September 15

Untyped

))

Untyped

))

Typ e d Type

Checker

)

Untyped Optional

B B e

Swap at will

N
Typed Type /

Checker

)

Untyped

))

Typed

Type
Checker

)

Optional

Types
N
e

Runtime cannot depend
on types

Swap at will

Friday, 25 September 15

Untyped

))

Typed

Type
Checker

)

Optional

Types
N
e

Runtime cannot depend
on types

Swap at will

Like a linter in practice

Friday, 25 September 15

O -+ Optional — O Typed Clojure

Types

Friday, 25 September 15

Var annotation

/

(ann square [Int -> Int])
(defn square [a] (*x a a))

Machine-checked \
documentation ,
Normal Clojure code

Friday, 25 September 15

Heterogeneous map type

/

(ann day [‘{:day Int} -> Int])
(defn day [{d :dayl}] d)

Normal destructuring

Friday, 25 September 15

Explicit nil/null

(ann get-parent [File -> (U nil Str)])
(defn get-parent [f]
(.getParent £f))

Java interop

Friday, 25 September 15

Ad-hoc unions

/

(ann safe-inc [(U nil Int) -> Int])
(defn safe-inc [n]

(if n <«

. Conditional flow
(inc n)

o>>/

Never null

Friday, 25 September 15

Type alias

~

(defalias Expr
(U ‘{:op (Val :do), :exprs (Vec Expr)}
‘{:op (Val :val), :val Int}))

;; eg. {:op :do, :exprs [{:op :val, :val 1}]}

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])

(defmulti f :op)

(defmethod f :do [{exprs :exprs}]
(apply + (map f exprs)))

(defmethod f :val [{val :val}]
val)

(f {:0op :do,
cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})
s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])
(defmulti f :op)
(defmeth

f :do [{exprs :exprs}]
+ (map f exprs)))
(defmeéthod f :val [{val :vall]

(f {:0op :do,
cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})
s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])
(defmulti f :op)
(defmethod f :do [{exprs :exprs}]

+ (map f exprs)))
(defmgthod f :val [{val :vall}]

(f {:0op :do,
cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})
s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])
(defmulti f :op)
(defmethod f :do [{exprs :exprsl}]
+ (map f exprs)))

(defmgthod f :val [{val :vall]

(f :op :do,)

cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})

s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])

(defmulti f :op)

(defmethod f >Ho\liexprs : eXprst]
+ (map f exprs)))
(defmgthod f :val [{val :vall}]

(f {:0op :do,
cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})
s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])

(defmulti f :op)

(defmethod f >Ho\£iexprs : eXprst]
+ (map f exprs)))
(defmgthod f :val [{val :vall}]

(f {:0op :do,
cexprs [{:op :val, :val 30},
{:op :val, :val 12}]1})
s=> 42

Friday, 25 September 15

Arbitrary multimethod dispatch

(ann f [Expr -> Int])

(defmulti f :op)

(defmethod f >Ho\£iexprs : eXprst]
+ (map f exprs)))
(defmgthod f :val [{val :vall}]

(f {l:op :do,
*exprs [{:0p :val, :val 30},
{:op :val, :val 12}]1})

s=> 42

Friday, 25 September 15

Optional Typing
is all the rage

Friday, 25 September 15

Friday, 25 September 15

flow N\ DAart TypeScript

N

JS

Friday, 25 September 15

Typed Clojure in Practice

Friday, 25 September 15

3 Cer|eCi Home

Why we’re supporting Typed Clojure,
and you should too!

by circleci on September 27, 2013

tl;dr Typed Clojure is an important step for not just Clojure, but all dynamic languages. CircleCl is
supporting it, and you should too.

Typed Clojure is one of the biggest advancements to dynamic programming languages in
the last few decades. It shows that you can have the amazing flexibility of a dynamic
language, while providing lightweight, optional typing. Most importantly, this can make your
team more productive, and it's ready to use in production.

Even if you don't use Clojure, you should support the Typed Clojure campaign, because its
success will help developers in your language realize how great optional typing can be in
everyday code. Whether you write Ruby or Python or JavaScript or whatever, what we're

learning from Typed Clojure can be applied to your language.

Why optional typing?

Dynamic languages have long been criticised for being hard to maintain at scale. When you
grow to a large team or a large code base, it becomes more difficult to refactor a code base,
to understand how it works, and to make sure it does what it should.

About Blog Contact Login

Sign Up For Updates From Our Blog

Follow Subscribe
¥ A\

*3 Begin Free Trial

2013

Friday, 25 September 15

CircleCI Data

®) year trial

® 8/ typed namespaces

® |05 Java interactions

e 328 HMap operations

® || multimethods, 89 defmethods

® 407 (22%) checked def’s, 1427 (78%) unchecked

Friday, 25 September 15

3 CirC|eC| Home About Blog Contact

Sign Up For Updates From Our

Why we’re no longer using Core.typed

by Marc O'Morain on September 23, 2015 ’ Follow a\ Subsc

In September 2013 we blogged about why we're supporting Typed Clojure, and you should
too! Now, 2 years later, our engineering team has made a collective decision to stop using
Typed Clojure (specifically the core.typed library). As part of this decision, we wanted to <

write a blog-post about our experience using core.typed.

The reason that we decided to stop using core.typed was because we found that the cost of
using it was greater than the benefit we gained. This is a subjective view, of course, so we

will detail our reasoning below. 2
The core.typed library is part of the Typed Clojure project. It is a library that adds optional O 1 5

typing to Clojure code. Core.typed allows the developer to add type-annotations to Clojure
forms, and then a type-checking process can be run to verify the type-information of your

program.

r ; £ -1l L | . ned A A1 o mraiact The varme Far Al i1 maaivm e mcoambatme~ ND NO0D

Friday, 25 September 15

Postmortem

® Slow type checking
® |nhcomplete support for Clojure idioms

® Missing third-party annotations

Friday, 25 September 15

Postmortem

® Slow type checking
® |nhcomplete support for Clojure idioms

® Missing third-party annotations

407 (22%) checked def’s, 1427 (78%) unchecked

Friday, 25 September 15

Pitch: Gradual Typing

Check the 22% at compile-time Check the 78% at runtime

\ Sanely handle interaction /

407 (22%) checked def’s, 1427 (78%) unchecked

Friday, 25 September 15

What is Gradual Typing?

Friday, 25 September 15

Gradual typing forces all
code to respect static invariants

Friday, 25 September 15

(ann square [Int -> Int])
(defn square [a] (*x a a))

@

Optlonal Typing

eeeeeeeeeeeeeeeeeee

(ann square [Int -> Int])
(defn square [a] (*x a a))

@

(square 2)
;=>4

(square 2)
;=> 4

Q

@

Friday, 25 September 1

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2)
;=> 4

(square 2)
;=>4

Q

(square nil)

; Expected Int,

; found nil

Optional Typing

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2)
;=> 4

(square 2)
;=>4

Q

(square nil)

; Expected Int,

; found nil

Optional Typing

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2) (square 2)

;=> 4 ;=>4

(square nil) (square nil)

; ; Exception:

; Expected Int, ; NullPointerException
; found nil X

Optional Typing

Friday, 25 September 15

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2) (squar

=>4 ;=

(square nil) (square nil

; ; Exception:

; Expected Int, ; NullPointerException
; found nil X

Optional Typing

Friday, 25 September 15

Typed Clo]ure

+for Clojure

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2)
;=>4

(square 2)
;=> 4

Q,

Friday, 25 September 1

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2)
;=> 4

(square 2)
;=>4

Q,

(square nil)

; Expected Int,

; found nil

Gradual Typing

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2) (square 2) ')
;=> 4 ;=>4

(square nil) (square nil)

; Expected Int, ; Expected Int,

; found nil ; found nil

Gradual Typing

Friday, 25 September 15

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2) '
;=>4 '

(square nil)

Gradual Typing

eeeeeeeeeeeeeeeeeee

(ann square [Int -> Int])
(defn square [a] (*x a a))

(square 2)
;=>4

Q,

(square nil)

Compiles to:\

(square (cast Int nil))

Gradual Typing

Optional Typing

Optional Typing

Optional Typing

©
(@]

"

Depends on

3
4

Optional Typing

@
@

Depends on

Optional Typing

@
@

Typed invariants cannot be violated

Depends on

Friday, 25 September 15

Gradual Typing

Gradual Typing

Gradual Typing

3 Depends on

Gradual Typing

@

o 3 Depends on
Ny, [/
"‘ ’ 4 '

Typed invariants cannot be violated

"\ Typed Racket

Friday, 25 September 15

0 Typed Racket 'A‘ Racket

Friday, 25 September 15

"‘ Racket
A\
A\

0 Typed Racket

A

Friday, 25 September 15

0 Typed Racket "‘ Racket

Friday, 25 September 15

0 Typed Racket "‘ Racket

Friday, 25 September 15

"‘ Racket
A\
A\

0 Typed Racket

A

Blame

Friday, 25 September 15

"‘ Racket
A\
A\

Q Typed Racket

A

Blame

Friday, 25 September 15

0 Typed Racket "‘ Racket

o N

Blame

Friday, 25 September 15

0 Typed Racket "‘ Racket

Q)

Friday, 25 September 15

What's done in Typed Clojure?

Friday, 25 September 15

‘ Typed CIOJure

+for Clojure

@

STL 2014 > @ Typed Clojure
@ Clojure

>

Typed Clo]ure

+for Clojure

Automatic type hints >
Typed REPL >

STL 2014 > @ Typed Clojure

Clojure

Friday, 25 September 15

Typed REPL

(ns ~:core.typed my-ns)

my-ns=> (inc 1)
:- Long
2

Friday, 25 September 15

Typed REPL

(ns ~:core.typed my-ns)

my-ns=> (inc 1)

:- Long

2

my-ns=> (inc nil)

Expected Number, found nil

in: (clojure.lang.Numbers/inc nil)

Found 1 error
my-ns=>

Friday, 25 September 15

Enabling Typed REPL

project.clj:

:repl-options
{:nrepl-middleware
[clojure.core.typed.repl/wrap-clj-repll]}

Friday, 25 September 15

require+check w/ typed REPL

@

; (require ‘my-inc-fail)

(ns
my-inc-fail)

(inc nil)

; NullPointerException

Friday, 25 September 15

require+check w/ typed REPL

(ns (ns ~:core.typed
my-inc-fail) my-inc-fail)

(inc nil) (inc nil)

; (require ‘my-inc-fail) ; (require ‘my-inc-fail)

; NullPointerException ; Lype Error:

; Expected Num, given nil

Friday, 25 September 15

Cache for free

; 3 Cached
(require ‘my-ns)

Friday, 25 September 15

Cache for free

; 3 Cached
(require ‘my-ns)

N\

(load ‘“‘my_ns’’)

Friday, 25 September 15

Cache for free

; 3 Cached
(require ‘my-ns)

N\

(load “‘my_ns’’)

\

Check via Typed REPL
;5 lransitive deps cached

Friday, 25 September 15

Automatic type hints

(ns ~:core.typed my-ns)

(defn get-parent [a :- Any]
{:pre [(instance? java.io.File a)l]}
(.getParent a))

N

Non-reflective via static types

Friday, 25 September 15

Next steps

Friday, 25 September 15

>

Typed Clo]ure

+for Clojure

Automatic type hints >
Typed REPL >

STL 2014 > @ Typed Clojure

Clojure

Friday, 25 September 15

>

Typed Clo]ure

+for Clojure

Check typed exports
Check untyped imports
Better proxy story

Automatic type hints
Typed REPL

STL 2014

YV Vv Vv Y VY

v

@ Typed Clojure

Clojure

Friday, 25 September 15

"‘ Racket
A\
A\

0 Typed Racket

A

Friday, 25 September 15

Proxy problem

(deftype A [1)

(proxy [A] L[1)
; CompilerkException java.lang.VerifyError:
; Cannot inherit from final class

Friday, 25 September 15

How to intercept methods?

(defprotocol IPoint (proxy [Point] []
(get-x [this]) (get-x [this]
(get-y [this])) {:post [(integer? %)]}
(get-x this))
(deftype Point [x vl (get-y [this]
IPoint {:post [(integer? %)1}
(get-x [this] x) (get-y this)))

(get-y [this] y))
; CompillerException java.lang.VerifyError:

; Cannot inherit from final class

Friday, 25 September 15

Racket VM

Chaperones
and Impersonators

Friday, 25 September 15

Clojure
Racket VM

Chaperones
and Impersonators

Friday, 25 September 15

Check untyped imports

Q

(ns ~:core.typed my-ns
(:require [my-untyped :as u] (ns my-untyped)
[clojure.core.typed :as t]))

(defn uinc [n]

‘“hello’’)
&

(t/import-untyped u/uinc [Int -> Int])

(u/uinc 41)

Friday, 25 September 15

Check untyped imports

Q

L)

(ns ~:core.typed my-ns

(:require [my-untyped :as u] (ns my-untyped)
[clojure.core.typed :as t]))

(defn uinc [n]
(t/import-untyped u/uinc [Int -> Int]) ““hello’?) D

(u/uinc 41)

h(w

Friday, 25 September 15

Check untyped imports

(ns ~:core.typed my-ns
(:require [my-untyped :as u] (ns my-untyped)
[clojure.core.typed :as t]))
(defn uinc [n]

(t/import-untyped u/ulnc [Int ->yInt]) “hello’?)
Blame w7 (
(uw/uinc 41)

Lv«

Friday, 25 September 15

‘ Typed CIOJure

+for Clojure

@

STL 2014 > @ Typed Clojure
@ Clojure

>

Typed Clo]ure

+for Clojure

Automatic type hints >
Typed REPL >

STL 2014 > @ Typed Clojure

Clojure

Friday, 25 September 15

>

Typed Clo]ure

+for Clojure

Check typed ekpbl;ts
Check untyped imports
Better proxy story

Automatic type hints
Typed REPL

STL 2014

YV Vv Vv Y VY

v

@ Typed Clojure

Clojure

Friday, 25 September 15

Gradual Typing for
Clojure

Typed Clo]ure

+for Clojure

Check typed ekpbl;ts
Check untyped imports
Better proxy story

Automatic type hints
Typed REPL

STL 2014

YV Vv Vv Y VY

v

@ Typed Clojure

Clojure

Friday, 25 September 15

Gradual Typing for
Clojure

Typed Clo]ure

+for Clojure

Check typed ekpbl;ts
Check untyped imports
Better proxy story

Automatic type hints
Typed REPL

STL 2014

Thanks!

YV Vv Vv Y VY

v

@ Typed Clojure

Clojure

Friday, 25 September 15

