
A Practical Optional
Type System for

Clojure
Ambrose Bonnaire-Sergeant

Statically typed vs.
Dynamically typed

• Traditional distinction

• Dynamically typed

• eg. Javascript, Ruby, Python

• No type checking at compile time

• Statically typed

• eg. Java, C, Haskell

• Performs type checking at compile time

Statically typed

• +ve

• Helps avoid common errors

• -ve

• Type checking is mandatory

Dynamically typed

• +ve

• More flexible idioms are possible

• -ve

• Fewer errors caught at compile time

Clojure

• Released October 2007 by Hickey

• Dynamically typed

• Emphasis on immutability, functional programming

• Implementations for

• Java Virtual Machine (Clojure)

• Common Language Runtime (ClojureCLR)

• Javascript virtual machines (ClojureScript)

Motivation

• Higher-order programming styles

• Static type systems can help verify this
code as correct

• No similar tools in Clojure ecosystem

Typed Racket

• Typed sister language of Racket

• Understands many Racket idioms

• Emphasis on module-by-module porting of
untyped code

• Requires fundamental differences to standard static
type systems (like Java’s, C’s) to support existing
idioms

• Needs to express more precise invariants

• Union types, intersection types, occurrence typing

Classifying optional
type systems

• Different programmers have different
concepts of types and type systems

• Reynolds (2002) and Pfenning (2008)
distinguish between intrinsic and extrinsic
type systems

Intrinsic type systems

• Traditional type systems

• Types determined at compile time define a
runtime semantics

• ie. programs must pass the type checker
to be meaningful

• eg. Java, C, Haskell, ML

Extrinsic type systems

• Runtime semantics do not depend on static
type checker

• Can be considered an “extra” layer of
checking

• eg. SML CIDRE, by Davies (2005)

• Adds “refinement-types” to Standard ML

• Optional type systems are extrinsic type
systems

Typed Clojure

• An optional type system for Clojure

• Write Clojure code as normal

• Add types when helpful, while preserving style

• Largely based on lessons learnt from Typed Racket

• With important additions supporting Clojure
idioms

• Intended for everyday use by Clojure
programmers

Example - Maybe Monad

(defmonad maybe-m
 [m-zero nil
 m-result (fn m-result-maybe [v] v)
 m-bind (fn m-bind-maybe [mv f]
 (if (nil? mv)
 nil
 (f mv)))
 ...
])

Example - Maybe Monad

(defmonad maybe-m
 [m-zero nil
 m-result (fn m-result-maybe [v] v)
 m-bind (fn m-bind-maybe [mv f]
 (if (nil? mv)
 nil
 (f mv)))
 ...
])

Example - Maybe Monad

(defmonad maybe-m
 [m-zero nil
 m-result (fn m-result-maybe [v] v)
 m-bind (fn m-bind-maybe [mv f]
 (if (nil? mv)
 nil
 (f mv)))
 ...
])

Occurrence typing

(ann clojure.core/nil? [Any -> boolean
 :filters {:then (is nil 0)
 :else (! nil 0)}])

Monads
(ann maybe-m (MonadPlusZero
 (TFn [[x :variance :covariant]]
 (U nil x))))
(defmonad maybe-m
 [m-zero nil
 m-result (ann-form
 (fn m-result-maybe [v] v)
 (All [x]
 [x -> (U nil x)]))
 m-bind (ann-form
 (fn m-bind-maybe [mv f]
 (if (nil? mv) nil (f mv)))
 (All [x y]
 [(U nil x) [x -> (U nil y)] -> (U nil y)]))
 ...
])

Contributions

• Prototype type checker for Clojure based on Typed Racket

• Novel use of occurrence typing for Java interoperability

• null is directly expressible as a static type, made possible by occurrence
typing

• Show how a combination of intersection types and occurrence typing can
type check common usages of Clojure’s sequence abstraction

• Accommodate Clojure’s idiomatic usage of hash-maps with heterogeneous
map types

• Identify the main future issues to typing Clojure code

Implementation

• Majority of the effort was spent programming the type checker

• Approx. 9,300 lines implementation

• Bidirectional checking ~2000 lines

• Occurrence typing ~2000 lines

• Typed Racket port

• Variable-arity polymorphism ~1000 lines

• Most complicated part (mostly involved porting from Typed Racket)

• Annotates some core Clojure libraries

Experiments

• Monad library

• Almost all monad, monad transformer, monad function definitions ported

• Motivated an extension with type functions (functions at the type level)

• Java Interoperability

• Ported a function that uses reflection

• Complicated invariants with respect to null

Future work

• Blame calculus

• Improves errors when interfacing with untyped code

• Multimethods

• Prove soundness of the type system

• eg. types are preserved during evaluation

• Designed to be sound, not formally proven yet

• Likely using standard techniques from programming
language research

Conclusion

• Interest exists

• Talk will be given at Clojure Conj 2012

• Google Summer of Code 2012 project for
Clojure

• Appears to be both practical and useful

Demo

