Typed Clojure: Wishful Thinking Ambrose Bonnaire-Sergeant

This talk

- Quick intro to Typed Clojure
- List of challenges/solutions to improve Typed Clojure
 - Barriers to Entry
 - Annotation Burden
 - Strictness
 - ClojureScript
- Hopefully some discussion

What is Typed Clojure?

- Optional type system for Clojure
 - Write expected types for your program, checker will validate
- Static analysis
 - Checks your program without running it

Example

(defalias Point '{:x Int :y Int})

(ann point [Int Int -> Point]) (defn point [x y] '{:x x :y y})

(ann add-xy [Point -> Int]) (+ x y))

- "A point with x-y coordinates"

(defn add-xy [{:keys [x y] :as p}]

(defn maybe-add-xy [{:keys [x y] :as p}] (when p (+ x y))); x : Int, y : Int

True unions + Flow typing

- (ann maybe-add-xy [(U nil Point) -> (U nil Int)])

Expands <u>before</u> checking

(defmacro my-when [& body] `(when ~@body))

(ann maybe-add-xy [(U nil Point) -> (U nil Int)])
(defn maybe-add-xy [{:keys [x y] :as p}]
 (my-when p
 (+ x y)))

Part 1: Barriers to entry

- bad error messages

- initialization time in production

- lack of library annotations

- collecting annotations
- expanding/defining wrapper macros

Don't want to increase initialization time for type checked libraries

Solution

(ns foo ...) ; lazily load ann (t/register-ns! 'foo.annotations)

(def f 1)

Delay loading annotations

(ns foo.annotations (:require [...]))

(t/ann f Int) (t/ann g Int)

- libraries don't provide their own types - no central place for annotations like DefinitelyTyped for TypeScript

No source of type annotations for libraries

Solutions

- Start a suite of annotations under typedclojure GitHub org - reuse specs as a type annotations
 - unfortunately, specs don't often make good types
 - no polymorphism
 - how to translate semantics to types? (eg. fspec, every)
 - s/keys's implicit optional entries
 - can we retrofit these specs to be more useful as types?
- Guidelines for how to add type annotations to your own libraries

(inc (when foo 1))

in: nil in: (if foo 1 nil)

Error messages from macro expansions point to code the user didn't write

Type error: Expected Number, found nil

Solution

(when foo 1)

The custom rule:

(if foo 1 (with-blame {:form '(when foo 1) :msg 'Else branch of `when` expected nil'} nil))

Custom typing rules

Type error: Expected Number, found nil Message: Else branch of `when` expected nil in: (when foo 1)

Part 2: Annotation burden

- too many `fn` annotations
- brittle polymorphic inference
- these macros need their own annotations

need "wrapper" macros to help check complex expansions

(f 1))

Need to annotate "obvious" function arguments

(let [f (fn [x :- Int] (inc x))]

Solution

(let [f #(inc %)]

Caveats:

- Need to handle infinite recursion (eg. checking y-combinator) - Can we avoid redundantly re-checking body of fn?

Delay type checking fn body until called

; f : (Lambda #(inc %)) (f 1)); checking happens here

Need to annotate polymorphic higher-order function arguments

(map (fn [a :- Int] ...) [1 2 3])

Solution: Smarter inference

Deduce an optimal "ordering" for checking arguments

- 1. Check collection first
- 2. Use collection type to seed function argument
- 3. Now we have the return argument type
- 4. Which travels to the return of the entire function

Type checking comp

(ann f [Number -> Number])
(def f (comp #(inc %) #(dec %)))

Type checking comp (ann f [Number -> Number])

; Type of `comp`

Type checking map transducer (ann f (Transducer [Num -> Num]))

; Type of the `map` transducer

Scale to comp+transducers

; Call (sequence (comp (map #(inc %)) (map #(dec %))) [1 2 3])

(require '[clojure.core.typed.async :as ta]) (ta/go (when foo 1))

- Need to write typed wrappers for macros with complex expansions

Solution

then expand them after type checking

Support custom rules for macros that don't require expansion,

when foo 1) (go (if foo foo ┶ Reinsert nil) nil))

Need to write local annotations for wrapper macros

...)

(t/doseq [a :- Int, [1 2 3]] :- Int

Solution

Write custom typing rules to direct inference.

Part 3: Strictness

- opt-in unsoundness

- stricter map operations

Map ops don't catch enough type errors

(ann m1 (HMap :optional {:foo Int})) (def m1 (assoc {} :foob)1)) (ann v (U nil Int)

(def v (get {:exists 1} :non-existent-key))

Assoc wrong key

Get wrong key

Solutions(?)

More restrictive subtyping for HMap's

(ann m1 (HMap :optional {:foo Int})) (def m1 (assoc {} :foob)1))

(ann v (U nil Int) (def v (get {:exists 1} :non-existent-key))

Assoc wrong key

- Error: unknown key :foob

Get wrong key

Typed Clojure is too strict with unannotated code

(check-ns 'my-ns :check-config {:check-ns-dep :never

- :unannotated-def :unchecked
- :unannotated-var :unchecked
- :unannotated-arg :unchecked})

Solution

Opt-out of soundness—closer to TypeScript when needed

Part 4: ClojureScript

- analyzer that supports partial analysis
- undefined/nil
- Closure/TypeScript annotations

(go (when foo 1))

(go (if foo 1 nil))

Analyzer that can partially expand code (does not exist yet)

(defalias Nilable (TFn [x] (U nil x)))

(defalias Nilable

ClojureScript mostly treats nil/undefined as equivalent

- (TFn [x] (U undefined nil x)))

More problems...

But now...:

- Is nil == js/Null?
- Is js/Undefined <: nil? since (nil? js/undefined) => true - Either choice has interesting consequences

Solution: Introduce new base types js/Null and js/Undefined

How to use Closure/TypeScript annotations to our advantage?

What is Typed Clojure good at?

- Flow typing
- Checking higher-order idioms (channels, functions, atoms)
- Specifying polymorphic functions

Problems with Typed Clojure

- Insufficient local type inference
- Large annotation burden
- Slow (checking speed & dev iterations)
- Macro usages hard to check
- Sometimes too strict, sometimes too loose

Possible Solutions

- custom typing rules
 - better inference, error messages
- "directed" local type inference
- more flexible checking

Thanks