Local Type Inference
with
Symbolic Closures

Ambrose Bonnaire-Sergeant

What is Local Type Inference?

Partially-annotated ﬂ%} System F

programs e .
1. Bidirectional type checking

2. Parameter type inference
3. Type argument inference

Bidirectional checking

A Synthesis mode (types propagate up) v Checking mode (types propagate down)

Bidirectional checking

A Synthesis mode (types propagate up) v Checking mode (types propagate down)

'n A Int s A Str

e V Int
'(inc e) A Int

Bidirectional checking

A Synthesis mode (types propagate up) v Checking mode (types propagate down)

[eAT

'n A Int s A Str M- e W T

e W Int ', x:T HeAS

'—(inc e) A Int m

Bidirectional checking

A Synthesis mode (types propagate up) v Checking mode (types propagate down)

' 1A Int
' 1V Int

'—(inc 1) A Int
Example: Checking (inc 1)

Bidirectional checking

A Synthesis mode (types propagate up) v Checking mode (types propagate down)

Simple for
implementors and Yields predictable,
users to conceptualize local error messages
' 1A Int /
' 1V Int

'—(inc 1) A Int
Example: Checking (inc 1)

Parameter type inference

Input (Clojure) (ann (fn [X] (iIlC X)) [Int -> IIlt])

Infer function parameter types

Output (System F) (fn [x :- Int] (inc x))

Type Argument Reconstruction

Input (Clojure) (map inC [1 2 3])

\ Infer type arguments

Output(SystemF) (map(:[nt R II]_t> :I_I],C [1 2 3])

The "Hard-to-Synthesize
Arguments” Problem

(map (fn [x] (inc x)) [1 2 3])

The "Hard-to-Synthesize
Arguments” Problem

/(m'a/(fnb(] (inc x)) [1 2 3])

Cannot simultaneously infer
type arguments to map
and missing parameter type

X

The "Hard-to-Synthesize
Arguments” Problem

(map (fn [x] (inc x)) [1 2 3])

e

Cannot simultaneously infer
type arguments to map

and missing parameter type Why?
To infer type arguments,
you must first synthesize types for operands...

...but unannotated functions are hard-
to-synthesize types for!

Existing solutions

Typed {Racket,Clojure} Note: Any = T

Still doesn’t check! x (map (fn [X — Any] (inc X))
[1 2 3])

TypeScript Note: any ~ (voidx*)

[1,2,3] .map((x:any)=>x+1)

Function body is trusted!

Reticulated Python

map(lambda (x:Dyn): x+1,
[1,2,3])

Runtime overhead x

Existing solutions

Java Lambdas

List.of(1,2,3)

Type args
. g~~~“’.ma.p(x—>x+1)

Param type (inferred as Int)

Gold standard

Java Lambdas
roster

.Stream()
Type args =iy fi1lter(
Rmmnqm@/)y p -> p.getGender() == Person.Sex.MALE
&& p.getAge() >= 18
Typeargs\ && p.getAge() <= 25)
.map(p -> p.getEmailAddress())
.forEach(email -> System.out.println(email));

Type args 7'

Param type

Param type—"

...18 this achievable
with non-00 idioms?

Solving the
“Hard-to-synthesize arguments”
problem with Symbolic Analysis

Another hard-to-synthesize term

(let [f (fn [x] x)]
(f 1)
(f ccan)>

How to check?

Wishful thinking

1. Infer polymorphic principal(-like) type for f

/ (let [f (ann (fn [x] x)
(A1l [a] [a -> al))l

(let [f (fn [x] x)] (f 1)
(f 1) (f ccan))

(f ccan))

Wishful thinking

1. Infer polymorphic principal(-like) type for f

(let [f (ann (fn [x] x)
(A1l [a] [a -> al))]

(let [f (fn [x] x)] (f 1)
(f 1) (f ¢ caa 3))
(f a’ ,)) 2. Infer sufficiently capable intersection type for f

(let [f (ann (fn [x] x)
\ (IFn [Int -> Int]

[Str -> Str]))]
(f 1)
(f ccan>)

Wishful thinking

1. Infer polymorphic principal(-like) type for f

(let [f (ann (fn [x] x)
(A1l [a] [a -> al))]

(let [f (fn [x] x)] (£ 1)
(f 1) (f << aa 3))
(f ‘‘a’ ,)) 2. Infer sufficiently capable intersection type for f
(let [f (ann (fn [x] x)
h} (IFn [Int -> Int]
N it th framework of [Str -> Str]))]
Local Type Inference (f 1)

(f ccan>)

Challenges

(let [f (fn [x] x)]
(f 1)
(f ccan)>

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

Challenges

1. How to delay the checking of hard-to-
synthesize terms?

(let [f (fn [x] x) |
(f 1)
(f ccan)>

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

Challenges

1. How to delay the checking of hard-to-
synthesize terms?

(let [f (fn [x] x) |
(f 1)
(f ccan)>

\ 2. How to force checking of hard-to-

synthesize terms to preserve soundness?

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

[dea 1: Inline let-bound functions

(let [f (fn [x] x)]
(f 1)
(f ccan))

[dea 1: Inline let-bound functions

(let [f (fn [x] x)]
(f 1)
(f ccan))

(let [] J

((fn [x] x) 1)
((fn [x] x) “@))

[dea 1: Inline let-bound functions

(let [f (fn [x] x)]

1. How to delay the checking of

(f 1) hard-to-synthesize terms?
(f ‘‘a’ ,)) A: Inline let-bound unannotated functions
(let []

((fn [x] x) 1)
((fn [x] x) “@))

[dea 1: Inline let-bound functions

(let [f (fn [x] x)]

1. How to delay the checking of

(f 1) hard-to-synthesize terms?
(f ‘‘a’ ,)) A: Inline let-bound unannotated functions
2. How to force checking of hard-to-
synthesize terms to preserve soundness?
A: Automatic
(let []

((fn [x] x) 1)
((fn [x] x) “@))

[dea 1: Inline let-bound functions

(let [f (fn [x] x)]

1. How to delay the checking of

(f 1) hard-to-synthesize terms?
(f ‘‘a’ ,)) does not terminate if f is A: Inline let-bound unannotated functions
recursive
how to determine if a 2. How to force checking of hard-to-
x variable binds an synthesize terms to preserve soundness?
(unannotated) function? A: Automatic
(let []

((fn [x]) 1) |
(Cfn [x] %) “a’”)) x Problem: Variable-capture

[dea 1: Inline let-bound functions

(let [f (let [y <DB-write>]
(fn [x] y y))]
(f 1)
(f ““a’?))

[dea 1: Inline let-bound functions

(let [f (let [y <DB-write>]

(fn [x] y y))]
(f 1)
(f ““a’?))
?

(let []
((let [y <DB-write>]
(fn [x] y y))
1)
((let [y <DB-write>]
(fn [x] y y))
““a’’))

[dea 1: Inline let-bound functions

(let [f (let [y <DB-write>]
(fn [x] y y))]

(f 1)
(f ccan)) ?
[
(let []
((let [y <DB-write>] (let []
(fn [x] v 7)) ((fn [x] <DB-write> <DB-write>)
1) 1)
((let [y <DB-write>] ((fn [x] <DB-write> <DB-write>)
(fn [x] y y)) “a@’’))

ccaa a))

[dea 2: Let-polymorphism

(let [f (fn [X] X)] Let-polymorphism infers a principal type
(£ 1) scheme for “f* and copies the type (with
renamed unification variables) in each
(f % a)) occurrence of ' for separate instantiation.

...immediately doesn’t work because f’s type is hard-to-synthesize!
(no unification variables in Local Type Inference)

[dea 3: "Delayed function type”

(let [f (fn [x] x)]
(f 1)
(f ccan))

[dea 3: "Delayed function type”

(let [f (fn [x])]« @ @(fn [x] x)
1. How to delay the checking of
(f 1) hard-to-synthesize terms?
(f €¢q? ’)) A: Introduction rule for unannotated

functions makes a “delayed function type”

[dea 3: "Delayed function type”

Q(fn [x] x)

1. How to delay the checking of
hard-to-synthesize terms?

(let [f (fn [x] x)]
(f 1)

(f ‘€9’ ’)) A: Introduction rule for unannotated
functions makes a “delayed function type”

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

© (fn [X] X) <+ Tnt =-> 7 A: Applications of delayed function

types rechecks the function’s source
code with given argument types

[dea 3: "Delayed function type”

(let [f (fn [x] x)] e(fn [x] x)
1. How to delay the checking of
(f 1) hard-to-synthesize terms?
(f €¢q? ’)) A: Introduction rule for unannotated

functions makes a “delayed function type”

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

© (fn [X] X) <+ Tnt =-> 7 A: Applications of delayed function

types rechecks the function’s source

© (fn [X] X) <+ Str -> ? code with given argument types

[dea 3: "Delayed function type”

Q(fn [x] x)

1. How to delay the checking of
hard-to-synthesize terms?

(let [f (fn [x] x)]
(f 1)

(f ‘€9’ ’)) A: Introduction rule for unannotated
functions makes a “delayed function type”

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

) A: Applications of delayed function
0 (fn [X] X) <: Int -> 7 types rechecks the function’s source
© (fn [X] X) <: Sty > 7 code with given argument types

Problem: Undecidable!

[dea 3: "Delayed function type”

1. Delay (fn [f] (f £))

(let [f (fn [f] (f £))] 2.Check (f f)
(f 1)) 3. Check (f £f)

4. Check (£ £)

Problem: Undecidable!

Restrictions

Insight:
Many local functions are not recursive
(implicitly or explicitly)

Restrictions

Insight: Insight:
Many local functions are not recursive Most top-level functions have annotations
(implicitly or explicitly) anyway, and

are otherwise valuable to add

Restrictions

Insight: Insight:
Many local functions are not recursive Most top-level functions have annotations
(implicitly or explicitly) anyway, and

are otherwise valuable to add

New Restrictions:
1. Only delay local functions
Do not allow delayed functions to escape its top-level form
3. Use fuel to make uncommon cases (recursive locals)
conservatively decidable

N

[dea 3: "Delayed function type”

1. Delay (fn [f] (f £))

(let [f (fn [f] (f £))] 2.Check (f f) Fuel = 2
(£ £)) 3. Check (f f) Fuel =1

4. Check (f £f) Fuel = 0

5. Type error: Reduction limit

Tradeoff: Platform dependency

[dea 3: "Delayed function type”

(let [f (let [y 1]

(fn [x] y))]
(f 1)
(f ccan>>

Problem: Variable Capture!

[dea 3: "Delayed function type”

Problem: Variable Capture!

[dea 3: "Delayed function type”

(let [f (let [y 1]

(fn [X] y>>] Lost the type of y!
(£_1)
(be f : @(fn [x] y)

Problem: Variable Capture!

Solution: Symbolic Closures

(let [f (let [y 1]

(fn [x] y))]

(f 1)
(f ccan)) f YIIlt@<fIl [X] y>

Keep type envirm/ment for when

we need it ("type-level” closure)

Solution: Symbolic Closures

(1et [f (1et [y 1] Can check y!
(fn [x] y))]
(f 1)
(f ccan)) f YIIlt@<fIl [X] y>

Keep type envirm/ment for when

we need it ("type-level” closure)

Example Elaboration

Elaboration with Symbolic Closures

Input

(let [f (fn [x] x)]
(f 1)
(f ccan>)

Output

(let [f (ann (fn [x] x)
(IFn [Int -> Int]
[Str -> Str]))]
(f 1)
(f ““a’?))

Elaboration with Symbolic Closures

Input

(1et [f (fn [X] X)]" 1. Assign f a symbolic closure: f - {}@(fn [X] X)
(f 1)
(f “8.”))

Output

(let [f (ann (fn [x] x)
(IFn [Int -> Int]
[Str -> Str]))]
(f 1)
(f ““a’?))

Elaboration with Symbolic Closures

Input

(1et [f (fn [X] X)]" 1. Assign f a symbolic closure: f - {}@(fn [X] X)
(f 1) N Check 'f* with Int (returns Int) f <: Int -> 7

(f “8.”))

Output

(let [f (ann (fn [x] x)
(IFn [Int -> Int]
[Str -> Str]))]
(f 1)
(f ““a’?))

Elaboration with Symbolic Closures

Input

(1et [f (fn [X] X)]" 1. Assign f a symbolic closure: f - {}@(fn [X] X)

(f 1) w Check *f" with Int (returns Int) f <: Int -> 7

3. Check 'f" with Str (returns Str) f < Str -> 7
(f ¢ ca3 3))

Output

(let [f (ann (fn [x] x)
(IFn [Int -> Int]
[Str -> Str]))]
(f 1)
(f ““a’?))

Elaboration with Symbolic Closures

Input

(1et [f (fn [X] X)]" 1. Assign f a symbolic closure: f - {}@(fn [X] X)

(f 1) w Check *f" with Int (returns Int) f <: Int -> 7
3. Check 'f" with Str (returns Str) f < Str -> 7

(f “a’)) 4. Replace f’s type with its capabilities
Output j
(let [f (ann (fn [x] x)
(IFn [Int -> Int]
[Str -> Str]))]
(f 1)

(f ccan))

End example,
break for questions?

More about Symbolic Closures

C-APPCLOSURE
['F f:TVQlx.€ ['Fe:o M xz:obe: T

' (fe):T

C-APPCLOSURE
['F f:TVQlx.€ Fee:o M x:okbe:T

'F(fe):T

SC-CLOSURE
I''a,z:7He:o

Fr@lz.e < (1 — o)

C-APPCLOSURE
['F f:T"QMz.€ [Fe:o M x:okFe: T

.
**
.
.

Subtyping relation calls *°

e checker .
7 ", SC-CLOSURE
~l,a,x:THe:o

e

Fralz.e < (1 — o)

C-APPCLOSURE
['F f:T"QMz.€ ['Fe:0o M x:okFe: T

'F(fe):T

““' “‘
Subtyping relation calls & .
type checker . S C C .

% - L O S U RE .:

e

~la,z:7He:o

2
2
2 . .
— »+* Via subsumption rule

Faz.e < (1= o) &«

(map (fn [x] (inc x))
[1 2 3])

How to check?

(map (fn [x] (inc x))
[1 2 3])

Derive data-flow (ALl [a :/]’/ \
graph from operator EE@@ -> (Seg b))

How to check?

How to check?

Derive data-flow
graph from operator

Solve constraints
to a fixed point

(map (fn [x] (inc x))

[1 2 3])

[[%\:1fii?gg§%gii/a>:><Seq b)|)

{}0(fn [x] (inc x)) <:

(Vec Number)

<:

[a -> D] => Cl1
(Segable a) => C2

How to check?

Derive data-flow
graph from operator

Solve constraints
to a fixed point

Future work:

(map (fn [x] (inc x))
[1 2 3])

[[@a) -> (Seq\b) |)

{}0(fn [x] (inc x)) <:

(Vec Number) <

What if data-flow is recursive?

[a -> D] => Cl1
(Segable a) => C2

Related work

Related work

Expansion variables

((2:0) (((a—b) = b) —) =)

A

e e, ! \am—
((z:a1MNag) - (((ag —b1) = b1) A ((ag — by) — by) — ¢) — ¢)

Similar goal as
“Expansion variables” in
Intersection Type Inference

Similar cost:
Inference cost = Beta-reduction cost

Carlier & Wells’ System E (2004)

Related work

Colored Local Type Inference

Allows partial type information to propagate down
term

For instance, if g is known to have type Va.(Int — a) — a,

w

then
g (fun (XM

Conservative extension of Local Type Inference

Odersky et al. Colored Local Type
Inference (POPL 2001)

Review

Background:
Local type inference requires
annotations

Review

Background:
Local type inference requires

/ annotations

Problem:
Local annotations are annoying

Review

Background:
Local type inference requires

/ annotations

Problem:

. . Insight:
Local annotations are annoying

Top-level annotations are provided

Insight:
Local functions are usually trivial

Review

Background:
Local type inference requires

/ annotations

Problem:

. . Insight:
Local annotations are annoying

Top-level annotations are provided

Solution: Insight:

Use symbolic analysis e Local functions are usually trivial
to infer simple local functions

Thanks!

