
Local Type Inference
with

Symbolic Closures
Ambrose Bonnaire-Sergeant

What is Local Type Inference?

Partially-annotated
programs

System FLocal type inference

1. Bidirectional type checking
2. Parameter type inference
3. Type argument inference

Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

n Int

(inc e) Int

e Int

s StrΓ⊢ Γ⊢

Γ⊢

Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

n Int

(inc e) Int

e Int

e T

e T
s Str

(λ (x : T) e) T -> S

e S

Γ⊢ Γ⊢

Γ⊢

Γ⊢

Γ⊢

Γ⊢

Γ, x:T ⊢

Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

(inc 1) Int

1 Int

Γ⊢

1 IntΓ⊢

Γ⊢

Example: Checking (inc 1)

Bidirectional checking

Synthesis mode (types propagate up) Checking mode (types propagate down)

(inc 1) Int

1 Int

Γ⊢

1 IntΓ⊢

Γ⊢

Example: Checking (inc 1)

Simple for
implementors and

users to conceptualize
Yields predictable,

local error messages

Infer function parameter types

(ann (fn [x] (inc x)) [Int -> Int])

(fn [x :- Int] (inc x))

Input (Clojure)

Output (System F)

Parameter type inference

(map inc [1 2 3])

(map<Int,Int> inc [1 2 3])

Infer type arguments{

Input (Clojure)

Output (System F)

Type Argument Reconstruction

(map (fn [x] (inc x)) [1 2 3])

The “Hard-to-Synthesize
Arguments” Problem

(map (fn [x] (inc x)) [1 2 3])

Cannot simultaneously infer
type arguments to `map`

and missing parameter type

The “Hard-to-Synthesize
Arguments” Problem

(map (fn [x] (inc x)) [1 2 3])

Cannot simultaneously infer
type arguments to `map`

and missing parameter type

To infer type arguments,
you must first synthesize types for operands…

…but unannotated functions are hard-
to-synthesize types for!

The “Hard-to-Synthesize
Arguments” Problem

Why?

Existing solutions

Typed {Racket,Clojure}

TypeScript Note: any ≈ (void*)

(map (fn [x :- Any] (inc x))
 [1 2 3])

[1,2,3].map((x:any)=>x+1)

Still doesn’t check!

Function body is trusted!

Reticulated Python

map(lambda (x:Dyn): x+1,
 [1,2,3])

Runtime overhead

Note: Any = ⊤

Java Lambdas

Type args

Param type (inferred as Int)

List.of(1,2,3)
 .map(x->x+1)

Existing solutions

Gold standard

roster
 .stream()
 .filter(
 p -> p.getGender() == Person.Sex.MALE
 && p.getAge() >= 18
 && p.getAge() <= 25)
 .map(p -> p.getEmailAddress())
 .forEach(email -> System.out.println(email));

Type args

Param type

Type args

Param type

Type args

Param type
…is this achievable

with non-OO idioms?

Java Lambdas

Solving the
“Hard-to-synthesize arguments”
problem with Symbolic Analysis

Another hard-to-synthesize term

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

How to check?

Wishful thinking

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (All [a] [a -> a]))]
 (f 1)
 (f “a”))

1. Infer polymorphic principal(-like) type for f

Wishful thinking

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

1. Infer polymorphic principal(-like) type for f

(let [f (ann (fn [x] x)
 (All [a] [a -> a]))]
 (f 1)
 (f “a”))

2. Infer sufficiently capable intersection type for f

Wishful thinking

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

1. Infer polymorphic principal(-like) type for f

(let [f (ann (fn [x] x)
 (All [a] [a -> a]))]
 (f 1)
 (f “a”))

2. Infer sufficiently capable intersection type for f

This talk:
Achieving this transformation

within the framework of
Local Type Inference

Challenges

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

Challenges

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

1. How to delay the checking of hard-to-
synthesize terms?

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

Challenges

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

1. How to delay the checking of hard-to-
synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

Posed by Hosoya & Pierce,
“How Good is Local Type Inference?” (1999)

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

Idea 1: Inline let-bound functions

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let []
 ((fn [x] x) 1)
 ((fn [x] x) “a”))

Idea 1: Inline let-bound functions

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

1. How to delay the checking of
hard-to-synthesize terms?

A: Inline let-bound unannotated functions

(let []
 ((fn [x] x) 1)
 ((fn [x] x) “a”))

Idea 1: Inline let-bound functions

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

1. How to delay the checking of
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Inline let-bound unannotated functions

A: Automatic

(let []
 ((fn [x] x) 1)
 ((fn [x] x) “a”))

Idea 1: Inline let-bound functions

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

1. How to delay the checking of
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Inline let-bound unannotated functions

A: Automatic

(let []
 ((fn [x] x) 1)
 ((fn [x] x) “a”)) Problem: Variable-capture

Idea 1: Inline let-bound functions

does not terminate if f is
recursive

how to determine if a
variable binds an
(unannotated) function?

(let [f (let [y <DB-write>]
 (fn [x] y y))]
 (f 1)
 (f “a”))

Idea 1: Inline let-bound functions

(let [f (let [y <DB-write>]
 (fn [x] y y))]
 (f 1)
 (f “a”))

(let []
 ((let [y <DB-write>]
 (fn [x] y y))
 1)
 ((let [y <DB-write>]
 (fn [x] y y))
 “a”))

Idea 1: Inline let-bound functions

?

(let [f (let [y <DB-write>]
 (fn [x] y y))]
 (f 1)
 (f “a”))

(let []
 ((let [y <DB-write>]
 (fn [x] y y))
 1)
 ((let [y <DB-write>]
 (fn [x] y y))
 “a”))

Idea 1: Inline let-bound functions

(let []
 ((fn [x] <DB-write> <DB-write>)
 1)
 ((fn [x] <DB-write> <DB-write>)
 “a”))

?
?

Idea 2: Let-polymorphism

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

…immediately doesn’t work because f ’s type is hard-to-synthesize!
(no unification variables in Local Type Inference)

Let-polymorphism infers a principal type
scheme for `f` and copies the type (with
renamed unification variables) in each
occurrence of `f` for separate instantiation.

Idea 3: “Delayed function type”

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

Idea 3: “Delayed function type”

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

f : @(fn [x] x)
1. How to delay the checking of

hard-to-synthesize terms?
A: Introduction rule for unannotated
functions makes a “delayed function type”

Idea 3: “Delayed function type”

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

A: Applications of delayed function
types rechecks the function’s source
code with given argument types

f : @(fn [x] x)

@(fn [x] x) <: Int -> ?

1. How to delay the checking of
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Introduction rule for unannotated
functions makes a “delayed function type”

Idea 3: “Delayed function type”

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

A: Applications of delayed function
types rechecks the function’s source
code with given argument types

f : @(fn [x] x)

@(fn [x] x) <: Int -> ?
@(fn [x] x) <: Str -> ?

1. How to delay the checking of
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Introduction rule for unannotated
functions makes a “delayed function type”

Idea 3: “Delayed function type”

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

A: Applications of delayed function
types rechecks the function’s source
code with given argument types

f : @(fn [x] x)

Problem: Undecidable!

@(fn [x] x) <: Int -> ?
@(fn [x] x) <: Str -> ?

1. How to delay the checking of
hard-to-synthesize terms?

2. How to force checking of hard-to-
synthesize terms to preserve soundness?

A: Introduction rule for unannotated
functions makes a “delayed function type”

Idea 3: “Delayed function type”

(let [f (fn [f] (f f))]
 (f f))

Problem: Undecidable!

1. Delay (fn [f] (f f))

2. Check (f f)

3. Check (f f)

4. Check (f f)

…

Restrictions

Insight:
Many local functions are not recursive

(implicitly or explicitly)

Restrictions

Insight:
Many local functions are not recursive

(implicitly or explicitly)

Insight:
Most top-level functions have annotations

anyway, and
are otherwise valuable to add

Restrictions

Insight:
Many local functions are not recursive

(implicitly or explicitly)

Insight:
Most top-level functions have annotations

anyway, and
are otherwise valuable to add

New Restrictions:
1. Only delay local functions
2. Do not allow delayed functions to escape its top-level form
3. Use fuel to make uncommon cases (recursive locals)

conservatively decidable

Idea 3: “Delayed function type”

(let [f (fn [f] (f f))]
 (f f))

1. Delay (fn [f] (f f))

2. Check (f f) Fuel = 2

3. Check (f f) Fuel = 1

4. Check (f f) Fuel = 0
5. Type error: Reduction limit

Tradeoff: Platform dependency

Idea 3: “Delayed function type”

Problem: Variable Capture!

(let [f (let [y 1]
 (fn [x] y))]
 (f 1)
 (f “a”))

Idea 3: “Delayed function type”

Problem: Variable Capture!

(let [f (let [y 1]
 (fn [x] y))]
 (f 1)
 (f “a”))

Idea 3: “Delayed function type”

Problem: Variable Capture!

(let [f (let [y 1]
 (fn [x] y))]
 (f 1)
 (f “a”)) f : @(fn [x] y)

Lost the type of y!

Solution: Symbolic Closures

(let [f (let [y 1]
 (fn [x] y))]
 (f 1)
 (f “a”)) f : y:Int@(fn [x] y){

Keep type environment for when
we need it (“type-level” closure)

Solution: Symbolic Closures

(let [f (let [y 1]
 (fn [x] y))]
 (f 1)
 (f “a”)) f : y:Int@(fn [x] y){

Keep type environment for when
we need it (“type-level” closure)

Can check y!

Example Elaboration

Elaboration with Symbolic Closures

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

Input

Output

Elaboration with Symbolic Closures

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

Input

Output

f : {}@(fn [x] x)1. Assign f a symbolic closure:

Elaboration with Symbolic Closures

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

Input

Output

f : {}@(fn [x] x)1. Assign f a symbolic closure:

2. Check `f` with Int (returns Int) f <: Int -> ?

Elaboration with Symbolic Closures

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

Input

Output

f : {}@(fn [x] x)1. Assign f a symbolic closure:

2. Check `f` with Int (returns Int)

3. Check `f` with Str (returns Str)
f <: Int -> ?
f <: Str -> ?

Elaboration with Symbolic Closures

(let [f (fn [x] x)]
 (f 1)
 (f “a”))

(let [f (ann (fn [x] x)
 (IFn [Int -> Int]
 [Str -> Str]))]
 (f 1)
 (f “a”))

Input

Output

f : {}@(fn [x] x)1. Assign f a symbolic closure:

2. Check `f` with Int (returns Int)

3. Check `f` with Str (returns Str)

4. Replace f ’s type with its capabilities

f <: Int -> ?
f <: Str -> ?

End example,
break for questions?

More about Symbolic Closures

Subtyping relation calls
type checker

Via subsumption rule

Subtyping relation calls
type checker

(map (fn [x] (inc x))
 [1 2 3])

How to check?

(map (fn [x] (inc x))
 [1 2 3])

How to check?

Derive data-flow
graph from operator

(map (fn [x] (inc x))
 [1 2 3])

How to check?

Derive data-flow
graph from operator

Solve constraints
to a fixed point

{}@(fn [x] (inc x)) <: [a -> b] => C1

(Vec Number) <: (Seqable a) => C2

(map (fn [x] (inc x))
 [1 2 3])

How to check?

Derive data-flow
graph from operator

Solve constraints
to a fixed point

{}@(fn [x] (inc x)) <: [a -> b] => C1

(Vec Number) <: (Seqable a) => C2

Future work: What if data-flow is recursive?

Related work

Related work

Similar goal as
“Expansion variables” in

Intersection Type Inference

Carlier & Wells’ System E (2004)

Similar cost:
Inference cost = Beta-reduction cost

Expansion variables

Related work

Allows partial type information to propagate down
term

Odersky et al. Colored Local Type
Inference (POPL 2001)

{

Colored Local Type Inference

Conservative extension of Local Type Inference

Review
Background:

Local type inference requires
annotations

Review

Problem:
Local annotations are annoying

Background:
Local type inference requires

annotations

Review

Problem:
Local annotations are annoying

Background:
Local type inference requires

annotations

Insight:
Top-level annotations are provided

Insight:
Local functions are usually trivial

Review

Problem:
Local annotations are annoying

Background:
Local type inference requires

annotations

Insight:
Top-level annotations are provided

Solution:
Use symbolic analysis

to infer simple local functions

Insight:
Local functions are usually trivial

Thanks!

