
A Typed-Macro Writer’s Toolkit
Ambrose Bonnaire-Sergeant

Typed Clojure

I have no idea
how your macro

works! Help!!

I want to teach the
type system how my

macro works!
–Macro Author–Type System

The pitch

λProviding an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

 (when (number? a)
 a)

 (if (number? a)
 a
 nil)

expands to

 (when (number? a)
 a)

 (if (number? a)
 a
 nil)

expands to

Expected: Number
Found: nil

expands to

We’d like to blame
Expected: Number
Found: nil

 (when (number? a)
 a)

 (if (number? a)
 a
 nil)

expands to

But, we actually blame!
(defmacro when [test & body]
 `(if ~test
 (do ~@body)
 nil))

We’d like to blame
Expected: Number
Found: nil

 (when (number? a)
 a)

 (if (number? a)
 a
 nil)

Blame:
(when ~test ~@body)

(defmacro when [test & body]
 `(if ~test
 (do ~@body)
 nil))

Blame:
 ~@body

Solution: Custom Blame Forms

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

(for [a :- Int, ’(1 2 3)] :- Int
 (inc a))
;=> (2 3 4)

(for [a :- Int, ’(1 2 3)] :- Int
 (inc a))
;=> (2 3 4) How to eliminate annotation?

(for [a :- Int, ’(1 2 3)]
 (inc a))

Expected Type:
(Seq Sym)

expands to

Expected Type:
(Seq Sym)

(…
 (inc a)
 …)

(for [a :- Int, ’(1 2 3)]
 (inc a))

expands to

Expected Type:
(Seq Sym)

(…
 (inc a)
 …)

(for [a :- Int, ’(1 2 3)]
 (inc a))

We’d like to propagate
expected type

expands to

(…
 (inc a)
 …)

Expected Type:
Sym

Expected Type:
(Seq Sym)

Solution: Custom “Expected Type” Propagation

(for [a :- Int, ’(1 2 3)]
 (inc a))

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

(for [a ’(1 2 3)]
 (inc a))

expands to

(map inc ‘(1 2 3))

Solution: Simplified Expansion

Blame:
(inc a)

(for [a ’(1 2 3)]
 (inc a))

The pitch

λProviding an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

The pitch

1. Better errors
2. Less annotations
3. Simpler checks

The evidence

Thanks!

Providing an
extensible interface

to Typed Clojure’s
internals helps it be more

expressive and usable.

