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I have no idea 
how your macro 

works! Help!!

I want to teach the 
type system how my 

macro works!
–Macro Author–Type System



The pitch

λProviding an  
extensible interface  

to Typed Clojure’s 
internals helps it be more 

expressive and usable.
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  (when (number? a) 
    a) 

  
  (if (number? a) 
    a 
    nil) 

expands to



  
  (when (number? a) 
    a) 

  
  (if (number? a) 
    a 
    nil)

expands to

Expected: Number 
Found: nil



expands to

We’d like to blame
Expected: Number 
Found: nil

  
  (when (number? a) 
    a) 

  
  (if (number? a) 
    a 
    nil)



expands to

But, we actually blame!
(defmacro when [test & body] 
  `(if ~test 
     (do ~@body) 
     nil))

We’d like to blame
Expected: Number 
Found: nil

  
  (when (number? a) 
    a) 

  
  (if (number? a) 
    a 
    nil)



Blame: 
(when ~test ~@body)

(defmacro when [test & body] 
  `(if ~test 
     (do ~@body) 
     nil))

Blame: 
 ~@body

Solution: Custom Blame Forms
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(for [a :- Int, ’(1 2 3)] :- Int 
  (inc a)) 
;=> (2 3 4)



(for [a :- Int, ’(1 2 3)] :- Int 
  (inc a)) 
;=> (2 3 4) How to eliminate annotation?



(for [a :- Int, ’(1 2 3)] 
  (inc a)) 
 

Expected Type: 
(Seq Sym)



expands to

Expected Type: 
(Seq Sym)

(… 
  (inc a) 
  …)

(for [a :- Int, ’(1 2 3)] 
  (inc a))



expands to

Expected Type: 
(Seq Sym)

(… 
  (inc a) 
  …)

(for [a :- Int, ’(1 2 3)] 
  (inc a))

We’d like to propagate 
expected type



expands to

(… 
  (inc a) 
  …)

Expected Type: 
Sym

Expected Type: 
(Seq Sym)

Solution: Custom “Expected Type” Propagation

(for [a :- Int, ’(1 2 3)] 
  (inc a))
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(for [a ’(1 2 3)] 
  (inc a)) 
 



expands to

(map inc ‘(1 2 3))

Solution: Simplified Expansion

Blame: 
(inc a)

(for [a ’(1 2 3)] 
  (inc a)) 
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Thanks!

Providing an  
extensible interface  

to Typed Clojure’s 
internals helps it be more 

expressive and usable.


